Find Min of $\frac{a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}$ for $x+y+z=1$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary

Discussion Overview

The discussion revolves around finding the minimum value of the expression $$\frac{a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}$$ in terms of a positive parameter $a$, under the constraint that $x+y+z=1$ for non-negative real numbers $x$, $y$, and $z$. The scope includes mathematical reasoning and optimization techniques.

Discussion Character

  • Mathematical reasoning, Technical explanation

Main Points Raised

  • Post 1 presents the original problem statement, seeking the minimum value of the expression given the constraint.
  • Post 2 reiterates the problem but contains a correction regarding the variable used, changing $c$ to $z$.
  • Post 3 acknowledges a participant's contribution as correct, indicating some level of agreement on a previous response.
  • Post 4 repeats the problem statement and introduces the use of the Arithmetic Mean-Geometric Mean inequality (AM-GM) as part of the solution approach.
  • Post 5 also references the AM-GM inequality without providing further details.
  • A participant expresses appreciation for another's approach, suggesting a positive reception of the methods discussed.

Areas of Agreement / Disagreement

There appears to be some agreement on the correctness of certain approaches, but the overall discussion does not reach a consensus on the minimum value or the methods to achieve it.

Contextual Notes

The discussion does not clarify the assumptions or conditions under which the inequalities are applied, nor does it resolve the mathematical steps involved in finding the minimum value.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find, in terms of $a$, where $a \gt 0$, the minimum value of the expression $$\frac{a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}$$ for all non-negative real $x,\,y$ and $z$ such that $x+y+z=1$.
 
Last edited:
Mathematics news on Phys.org
anemone said:
Find, in terms of $a$, where $a \gt 0$, the minimum value of the expression $$\frac{a(x^2+y^2+c^2)+9xyz}{xy+yz+zx}$$ for all non-negative real $x,\,y$ and $z$ such that $x+y+z=1$.

Correction: it should be z instead of c

applying cyclic symmetry the value is at $x=y=z= \frac{1}{3}$ and the value is a + 1 . the value at $(1,0,0)$ is infinite
 
Last edited:
Your answer is correct, thanks for participating, kaliprasad!

I hope someone else could solve it without using the property of cyclic symmetry. :)
 
anemone said:
Find, in terms of $a$, where $a \gt 0$, the minimum value of the expression $$\frac{a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}$$ for all non-negative real $x,\,y$ and $z$ such that $x+y+z=1$.
Using $AP\geq GP$
$\dfrac {a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}
\geq\dfrac {a(x^2+y^2+z^2)}{x^2+y^2+z^2}+\dfrac {9xyz}{xy+yz+zx}$
$\geq a+27xyz=a+1$
(equality holds at $x=y=z=\dfrac {1}{3}$
 
Albert said:
Using $AP\geq GP$
$\dfrac {a(x^2+y^2+z^2)+9xyz}{xy+yz+zx}
\geq\dfrac {a(x^2+y^2+z^2)}{x^2+y^2+z^2}+\dfrac {9xyz}{xy+yz+zx}$
$\geq a+27xyz=a+1$
(equality holds at $x=y=z=\dfrac {1}{3}$

Thanks Albert for participating! Your approach is correct and neater than mine!(Cool)

My solution:

Since $9xyz≥4(xy+yz+zx)-1$ (by the Schur's inequality), we can transform the objective function as

$$\frac{a(x^2+y^2+c^2)+9xyz}{xy+yz+zx}$$

$$=a\left(\frac{x^2}{xy+yz+zx}+\frac{y^2}{xy+yz+zx}+\frac{z^2}{xy+yz+zx}\right)+\frac{9xyz}{xy+yz+zx}$$

$$\ge a\left(\frac{x^2}{xy+yz+zx}+\frac{y^2}{xy+yz+zx}+\frac{z^2}{xy+yz+zx}\right)+\frac{4(xy+yz+zx)-1}{xy+yz+zx}$$ (by the Schur's inequality)

$$= a\left(\frac{x^2}{xy+yz+zx}+\frac{y^2}{xy+yz+zx}+\frac{z^2}{xy+yz+zx}\right)+4-\frac{1}{xy+yz+zx}$$

$$\ge a\left(\frac{(x+y+z)^2}{3(xy+yz+zx)}\right)+4-\frac{1}{xy+yz+zx}$$ (by the extended Cauchy-Schwarz inequality)

$$= a\left(\frac{1}{3(xy+yz+zx)}\right)+4-\frac{1}{xy+yz+zx}$$

$$= \frac{a-3}{3(xy+yz+zx)}+4$$

$$\ge \frac{a-3}{3\left(\frac{(x+y+z)^2}{3}\right)}+4$$ since $$xy+yz+zx\le \frac{(x+y+z)^2}{3}$$

$$= a-3+4$$

$$= a+1$$

Therefore, the minimum of $$\frac{a(x^2+y^2+c^2)+9xyz}{xy+yz+zx}$$ is $a+1$, this occurs when $x=y=z$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K