If we set the objective function as:
$$f(a,b,c,d)=a^2+b^2+c^2+d^2+(a+b+c+d)^2$$
subject to the constraint:
$$g(a,b,c,d)=a+2b+3d+4d-1=0$$
Then, Lagrange multipliers gives us:
$$2a+2(a+b+c+d)=\lambda$$
$$2b+2(a+b+c+d)=2\lambda$$
$$2c+2(a+b+c+d)=3\lambda$$
$$2d+2(a+b+c+d)=4\lambda$$
Now, adding these 4 equations, we find:
$$\lambda=a+b+c+d$$
and then we observe that the second equation gives us $b=0$ and we are left with:
$$3a+c+d=0$$
$$c-a-d=0$$
$$a+c=0$$
Now, these imply:
$$c=-a$$
$$d=-2a$$
And so substituting into the constraint, we find:
$$a+2(0)+3(-a)+4(-2a)=1\implies a=-\frac{1}{10}$$
and so we have the critical point:
$$(a,b,c,d)=\left(-\frac{1}{10},0,\frac{1}{10},\frac{1}{5}\right)$$
And we then find:
$$f\left(-\frac{1}{10},0,\frac{1}{10},\frac{1}{5}\right)=\frac{1}{100}+0+\frac{1}{100}+\frac{1}{25}+\frac{1}{25}=\frac{1}{10}$$
Now, to determine whether this extremum is a minimum or maximum, let's look at the point:
$$(a,b,c,d)=(1,0,0,0)$$
We find:
$$f(1,0,0,0)=1+1=2>\frac{1}{10}$$
Hence, we may then conclude:
$$f_{\min}=\frac{1}{10}$$