MHB Find n such that both n+3 and n^2+3 are perfect cubes

  • Thread starter Thread starter kaliprasad
  • Start date Start date
AI Thread Summary
The discussion revolves around finding an integer n such that both n+3 and n^2+3 are perfect cubes. It is established that if both expressions are cubes, their product also forms a specific cubic expression. However, it is noted that two consecutive cubes can only be 0 and 1, which is not applicable here since n^2 + 3 is always greater than or equal to 3. The conclusion drawn is that no such integer n exists, making the problem inherently impossible. The phrasing of the question is criticized for suggesting that a solution might be possible when it is not.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find n such that both $n+3$ and $n^2+3$ are perfect cubes
 
Mathematics news on Phys.org
kaliprasad said:
Find n such that both $n+3$ and $n^2+3$ are perfect cubes

hint

product of 2 cubes is a cube
 
kaliprasad said:
hint

product of 2 cubes is a cube
[sp]So if $n+3$ and $n^2+3$ are cubes then so is $(n+3)(n^2+3) = n^3 + 3n^2 + 3n = (n+1)^3 - 1$. But two consecutive numbers cannot both be cubes unless they are $0$ and $1$. Since $n^2 + 3 \geqslant 3$, the pair $0$ and $1$ cannot arise in this way. Therefore the question is asking for something impossible (which I think is a bit sneaky! (Tongueout) ).[/sp]
 
Last edited:
Opalg said:
[sp]So if $n+3$ and $n^2+3$ are cubes then so is $(n+3)(n^2+3) = n^3 + 3n^2 + 3n = (n+1)^3 - 1$. But two consecutive numbers cannot both be cubes unless they are $0$ and $1$. Since $n^2 + 3 \geqslant 3$, the pair $0$ and $1$ cannot arise in this way. Therefore the question is asking for something impossible (which I think is a bit sneaky! (Tongueout) ).[/sp]

Sorry Opalg,

product you evaluated is not correct
 
kaliprasad said:
Sorry Opalg,

product you evaluated is not correct
[sp]Oops, yes, of course it should be $(n+3)(n^2+3) = n^3 + 3n^2 + 3n + 9 = (n+1)^3 + 8$. But the only cubes that differ by $8$ are $0$ and $\pm8$. Since none of those numbers is of the form $n^2+3$, no such $n$ exists.

I still think it is unfair to phrase the question in a way that implies it is possible to find $n$, when in fact it is not possible.[/sp]
 
Opalg said:
[sp]
I still think it is unfair to phrase the question in a way that implies it is possible to find $n$, when in fact it is not possible.[/sp]

I do not think so. The answer is there is no such n. the set can be empty.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
20
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
9
Views
11K
Replies
7
Views
3K
Back
Top