Find Polynomials Fulfilling Real Coefficient Equation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomials
Click For Summary
SUMMARY

The discussion focuses on finding all polynomials \( P(x) \) with real coefficients that satisfy the equation \( (x^3-kx^2+1)P(x+1)+(x^3+kx^2+1)P(x-1)=2(x^3-kx+1)P(x) \) for a non-zero integer \( k \). Participants concluded that the polynomial must be of degree at most 2, leading to specific forms of \( P(x) \) such as linear and constant functions. The analysis involved substituting values and simplifying the resulting expressions to derive conditions on the coefficients of \( P(x) \). Ultimately, the solutions were characterized by their dependence on the integer \( k \).

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Familiarity with real coefficients in polynomial equations
  • Knowledge of algebraic manipulation and substitution techniques
  • Basic concepts of polynomial degree and its implications
NEXT STEPS
  • Study polynomial interpolation techniques to understand polynomial behavior
  • Explore the implications of polynomial degree on function properties
  • Learn about the role of coefficients in polynomial equations
  • Investigate similar functional equations in algebra for broader applications
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial equations and their properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $k\ne 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that $(x^3-kx^2+1)P(x+1)+(x^3+kx^2+1)P(x-1)=2(x^3-kx+1)P(x)$ for all real number $x$.
 
Mathematics news on Phys.org
Let $P(x)=a_nx^n+\cdots+a_0x^0$ with $a_n\ne 0$. Comparing the coefficients of $x^{n+1}$ on both sides gives $a_n(n-2m)(n-1)=0$ so $n=1$ or $n=2m$.

If $n=1$, one easily verifies that $P(x)=x$ is a solution, while $P(x)=1$ is not. Since the given condition is linear in $P$, this means that the linear solutions are precisely $P(x)=tx$ for $t\in \mathbb{R} $.

Now assume that $n=2m$. The polynomial $xP(x+1)-(x+1)P(x)=(n-1)a_nx^n+\cdots$ has degree $n$, and therefore it has at least one (possibly complex) root $r$. If $r\notin {0,\,-1)}$, define $k=\dfrac{P(r)}{r}=\dfrac{P(r+1)}{r+1}$. If $r=0$, let $k=P(1)$. If $r=-1$, let $k=-P(-1)$. We now consider the polynomial $S(x)=P(x)-kx$. It also satisfies the given equation because $P(x)$ and $kx$ satisfy it. Additionally, it has the useful property that $r$ and $r+1$ are roots.

Let $A(x)=x^3-mx^2+1$ and $B(x)=x^3+mx^2+1$. Plugging in $x=s$ into the given equation implies that

a. If $s-1$ and $s$ are roots of $S$ and $s$ is not a root of $A$, then $s+1$ is a root of $S$.

b. If $s$ and $s+1$ are roots of $S$ and $s$ is not a root of $B$, then $s-1$ is a root of $S$.

Let $a\ge 0$ and $b\ge 0$ be such that $r-a,\,r-a+1,\cdots,r,\,r+1,\cdots,\,r+b-1,\,r+b$ are roots of $S$, while $r-a-1$ and $r+b+1$ are not. The two statements above imply that $r-a$ is a root of $B$ and $r+b$ is a root of $A$.

Since $r-a$ is a root of $B(x)$ and of $A(x+a+b)$, it is also a root of their greatest common divisor $C(x)$ as integer polynomials. If $C(x)$ was a non-trivial divisor of $B(x)$, then $B$ would have a rational root $\alpha$. Since the first and last coefficients of $B$ are 1, $\alpha$ can only be 1 or -1, but $B(-1)=m>0$ and $B(1)=m+2>0$ since $n=2m$.

Therefore, $B(x)=A(x+a+b)$. Writing $c=a+b\ge 1$, we compute

$0=A(x+c)-B(x)=(3c-2m)x^2+c(3c-2m)x+c^2(c-m)$

Then we must have $3c-2m=c-m=0$, which gives $m=0$, a contradiction. We conclude that $f(x)=tx$ is the only solution.
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K