MHB Find Polynomials Fulfilling Real Coefficient Equation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Polynomials
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $k\ne 0$ be an integer. Find all polynomials $P(x)$ with real coefficients such that $(x^3-kx^2+1)P(x+1)+(x^3+kx^2+1)P(x-1)=2(x^3-kx+1)P(x)$ for all real number $x$.
 
Mathematics news on Phys.org
Let $P(x)=a_nx^n+\cdots+a_0x^0$ with $a_n\ne 0$. Comparing the coefficients of $x^{n+1}$ on both sides gives $a_n(n-2m)(n-1)=0$ so $n=1$ or $n=2m$.

If $n=1$, one easily verifies that $P(x)=x$ is a solution, while $P(x)=1$ is not. Since the given condition is linear in $P$, this means that the linear solutions are precisely $P(x)=tx$ for $t\in \mathbb{R} $.

Now assume that $n=2m$. The polynomial $xP(x+1)-(x+1)P(x)=(n-1)a_nx^n+\cdots$ has degree $n$, and therefore it has at least one (possibly complex) root $r$. If $r\notin {0,\,-1)}$, define $k=\dfrac{P(r)}{r}=\dfrac{P(r+1)}{r+1}$. If $r=0$, let $k=P(1)$. If $r=-1$, let $k=-P(-1)$. We now consider the polynomial $S(x)=P(x)-kx$. It also satisfies the given equation because $P(x)$ and $kx$ satisfy it. Additionally, it has the useful property that $r$ and $r+1$ are roots.

Let $A(x)=x^3-mx^2+1$ and $B(x)=x^3+mx^2+1$. Plugging in $x=s$ into the given equation implies that

a. If $s-1$ and $s$ are roots of $S$ and $s$ is not a root of $A$, then $s+1$ is a root of $S$.

b. If $s$ and $s+1$ are roots of $S$ and $s$ is not a root of $B$, then $s-1$ is a root of $S$.

Let $a\ge 0$ and $b\ge 0$ be such that $r-a,\,r-a+1,\cdots,r,\,r+1,\cdots,\,r+b-1,\,r+b$ are roots of $S$, while $r-a-1$ and $r+b+1$ are not. The two statements above imply that $r-a$ is a root of $B$ and $r+b$ is a root of $A$.

Since $r-a$ is a root of $B(x)$ and of $A(x+a+b)$, it is also a root of their greatest common divisor $C(x)$ as integer polynomials. If $C(x)$ was a non-trivial divisor of $B(x)$, then $B$ would have a rational root $\alpha$. Since the first and last coefficients of $B$ are 1, $\alpha$ can only be 1 or -1, but $B(-1)=m>0$ and $B(1)=m+2>0$ since $n=2m$.

Therefore, $B(x)=A(x+a+b)$. Writing $c=a+b\ge 1$, we compute

$0=A(x+c)-B(x)=(3c-2m)x^2+c(3c-2m)x+c^2(c-m)$

Then we must have $3c-2m=c-m=0$, which gives $m=0$, a contradiction. We conclude that $f(x)=tx$ is the only solution.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top