Find power needed to fly this airplane using momentum considerations

AI Thread Summary
The discussion centers on calculating the power needed for an airplane to fly using momentum considerations. Key points include the confusion over whether to define the velocity of combustion products relative to the plane or the ground. The equations presented involve changes in momentum and force, emphasizing the importance of defining the velocity correctly for accurate calculations. A suggestion is made to consider the scenario of simply dumping fuel to clarify the role of velocity in the equations. Ultimately, using the plane's rest frame simplifies the analysis by focusing on momentum changes from incoming air and outgoing exhaust.
mmfiizik
Messages
6
Reaction score
0
Homework Statement
Plane which flies at velocity v, every second takes m mass of air and consumes M mass of fuel. Combustion products are released at velocity u relative to the plane. Find power of the plane P.
Relevant Equations
Change in momentum = force x time
I just don't understand should I take u relative to the plane or relative to the ground.
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?
 
Physics news on Phys.org
mmfiizik said:
should I take u relative to the plane or relative to the ground.
Always worth checking a special case. What if the fuel were simply dumped instead of being burnt? What would u be? Do your equations give the right result?

There is an important difference between the fuel and the air. You have simply added them.
 
Since we are talking about rates here you should probably start with:

$$ F~dt = ( p+dp) - p $$

Where ##p## is the momentum of the system consisting of the planes mass (##M_p##), mass of fuel carried (##M##), and ejected mass air /fuel (##dm,dM_e##). The velocities of the various components are w.r.t. an inertial frame. ##u## is defined as relative to the plane so you must make that adjustment for components of the ejecta.
 
Last edited:
The rest frame of the plane is a good one to use since it allows us to ignore the momentum change from the decreasing mass of the plane over time. Instead, we can concentrate on the momentum flux from the incoming air and from the outgoing exhaust.
 
  • Like
Likes Lnewqban and erobz
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top