Find power needed to fly this airplane using momentum considerations

Click For Summary
The discussion centers on calculating the power needed for an airplane to fly using momentum considerations. Key points include the confusion over whether to define the velocity of combustion products relative to the plane or the ground. The equations presented involve changes in momentum and force, emphasizing the importance of defining the velocity correctly for accurate calculations. A suggestion is made to consider the scenario of simply dumping fuel to clarify the role of velocity in the equations. Ultimately, using the plane's rest frame simplifies the analysis by focusing on momentum changes from incoming air and outgoing exhaust.
mmfiizik
Messages
9
Reaction score
3
Homework Statement
Plane which flies at velocity v, every second takes m mass of air and consumes M mass of fuel. Combustion products are released at velocity u relative to the plane. Find power of the plane P.
Relevant Equations
Change in momentum = force x time
I just don't understand should I take u relative to the plane or relative to the ground.
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?
 
Physics news on Phys.org
mmfiizik said:
should I take u relative to the plane or relative to the ground.
Always worth checking a special case. What if the fuel were simply dumped instead of being burnt? What would u be? Do your equations give the right result?

There is an important difference between the fuel and the air. You have simply added them.
 
Since we are talking about rates here you should probably start with:

$$ F~dt = ( p+dp) - p $$

Where ##p## is the momentum of the system consisting of the planes mass (##M_p##), mass of fuel carried (##M##), and ejected mass air /fuel (##dm,dM_e##). The velocities of the various components are w.r.t. an inertial frame. ##u## is defined as relative to the plane so you must make that adjustment for components of the ejecta.
 
Last edited:
The rest frame of the plane is a good one to use since it allows us to ignore the momentum change from the decreasing mass of the plane over time. Instead, we can concentrate on the momentum flux from the incoming air and from the outgoing exhaust.
 
  • Like
Likes Lnewqban and erobz
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 27 ·
Replies
27
Views
607
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
3K
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
995
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
19
Views
2K