Find power needed to fly this airplane using momentum considerations

AI Thread Summary
The discussion centers on calculating the power needed for an airplane to fly using momentum considerations. Key points include the confusion over whether to define the velocity of combustion products relative to the plane or the ground. The equations presented involve changes in momentum and force, emphasizing the importance of defining the velocity correctly for accurate calculations. A suggestion is made to consider the scenario of simply dumping fuel to clarify the role of velocity in the equations. Ultimately, using the plane's rest frame simplifies the analysis by focusing on momentum changes from incoming air and outgoing exhaust.
mmfiizik
Messages
6
Reaction score
0
Homework Statement
Plane which flies at velocity v, every second takes m mass of air and consumes M mass of fuel. Combustion products are released at velocity u relative to the plane. Find power of the plane P.
Relevant Equations
Change in momentum = force x time
I just don't understand should I take u relative to the plane or relative to the ground.
I tried to solve it like this:
$$p_{final}=m_{0}v-m(u-v)-M(u-v)$$
$$p_{initial}=m_{0}v$$
$$\Delta p=-m(u-v)-M(u-v)$$
##m_0## is mass of the plane.
$$F=\Delta p$$
$$F=-m(u-v)-M(u-v)=(m+M)(v-u)$$
$$P=Fv=(m+M)(v-u)v$$
Or should I write in the first equation velocity of combustion products just u?
 
Physics news on Phys.org
mmfiizik said:
should I take u relative to the plane or relative to the ground.
Always worth checking a special case. What if the fuel were simply dumped instead of being burnt? What would u be? Do your equations give the right result?

There is an important difference between the fuel and the air. You have simply added them.
 
Since we are talking about rates here you should probably start with:

$$ F~dt = ( p+dp) - p $$

Where ##p## is the momentum of the system consisting of the planes mass (##M_p##), mass of fuel carried (##M##), and ejected mass air /fuel (##dm,dM_e##). The velocities of the various components are w.r.t. an inertial frame. ##u## is defined as relative to the plane so you must make that adjustment for components of the ejecta.
 
Last edited:
The rest frame of the plane is a good one to use since it allows us to ignore the momentum change from the decreasing mass of the plane over time. Instead, we can concentrate on the momentum flux from the incoming air and from the outgoing exhaust.
 
  • Like
Likes Lnewqban and erobz
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top