I like Serena said:
The range of $x$ in the integral is $[0,z]$.
If $0 \le z < 1$, then that implies that $0 \le x < 1$. Therefore $f_X(x) = 1$.
If $1 \le z \le 2$, then that implies that $0 \le x \le 2$.
However, we only have $f_X(x) = 1$ if $0 \le x \le 1$.
Therefore we need to limit the upper boundary to $1$ instead of $z$.
Then $f_X(x) = 1$ on the complete range of the integral.
(Wasntme)
Knowing that $$f_X(x) = \begin{cases}
1&\text{if } 0 \le x \le 1 \\
0 & \text{otherwise}
\end{cases}$$
we have the following:
$$f_Z(z)=\int_0^z f_X(x)f_Y(z-x)\,dx = \begin{cases}
\int_0^z f_X(x) \cdot f_Y(z-x)\,dx &\text{if } 0 \le z < 1 \\
\int_0^z f_X(x) \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1 \cdot f_Y(z-x)\,dx &\text{if } 0 \le z < 1 \\
\int_0^1 f_X(x) \cdot f_Y(z-x)\,dx +\int_1^z f_X(x) \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1 \cdot f_Y(z-x)\,dx &\text{if } 0 \le z < 1 \\
\int_0^1 1 \cdot f_Y(z-x)\,dx +\int_1^z 0 \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1 \cdot f_Y(z-x)\,dx &\text{if } 0 \le z < 1 \\
\int_0^1 1 \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases}$$
Then knowing that $$f_Y(x) = \begin{cases}
1&\text{if } 0 \le x \le 1 \\
0 & \text{otherwise}
\end{cases}$$ and
$0 \le x \le 1 \Rightarrow -1 \le x \le 0 \Rightarrow z-1 \le z-x \le z$
we have the following:
$$f_Z(z)=\int_0^z f_X(x)f_Y(z-x)\,dx = \begin{cases}
\int_0^z 1 \cdot f_Y(z-x)\,dx &\text{if } 0 \le z < 1 \\
\int_0^1 1 \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1 \cdot 1\,dx &\text{if } 0 \le z < 1 \\
\int_0^{z-1} 1 \cdot f_Y(z-x)\,dx + \int_{z-1}^1 1 \cdot f_Y(z-x)\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1\,dx &\text{if } 0 \le z < 1 \\
\int_0^{z-1} 1 \cdot 0\,dx + \int_{z-1}^1 1 \cdot 1\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \\ = \begin{cases}
\int_0^z 1\,dx &\text{if } 0 \le z < 1 \\
\int_{z-1}^1 1\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases} \Rightarrow \\ f_Z(z)= \begin{cases}
z &\text{if } 0 \le z < 1 \\
2-z\,dx &\text{if } 1 \le z \le 2 \\
0 & \text{otherwise}
\end{cases}$$
Therefore, $$P \left ( Z \leq \frac{9}{5} \right ) =\int_0^{\frac{9}{5}} f_Z(z)dz=\int_0^1 z dz+\int_1^{\frac{9}{5}} (2-z)dz= \left [ \frac{z^2}{2} \right ]_0^1+ \left [ 2z-\frac{z^2}{2} \right ]_1^{\frac{9}{5}}= \\ \frac{1}{2}+2\frac{9}{5}-\frac{1}{2} \left ( \frac{9}{5} \right )^2-2+\frac{1}{2}=\frac{18}{5}-\frac{81}{50}-1=\frac{180-81-50}{50}=\frac{49}{50}$$
Is this correct?? (Wondering)