MHB Find side length, cirumference and area of octagon

  • Thread starter Thread starter Daugava
  • Start date Start date
  • Tags Tags
    Area Length
AI Thread Summary
To create a regular octagon from a square piece of paper measuring 29 cm on each side, triangles must be cut from the corners. The length of each triangle's cathetus, denoted as x, can be calculated using the equation √2x = 29 - 2x, resulting in x being approximately 8.5 cm. The side length of the octagon is approximately 12.012 cm, leading to a circumference of about 96.0975 cm. The area of the octagon is calculated to be approximately 695.3 cm² after subtracting the area of the four triangles from the area of the square. The calculations confirm the dimensions and area of the octagon derived from the square.
Daugava
Messages
2
Reaction score
0
Square-shaped piece of paper is intended to make a regular octagon through the cutting of the vertices of a square.
The length of the piece of paper is 29 cm.
How long triangle cathetus have to be cut off from the vertices of the square?
Calculate the octagonal side length, circumference, and area.
Sorry for my english, if it's not understandable I'll try to explain it better.. but how do I do this?
View attachment 8187
 

Attachments

  • drawisland.png
    drawisland.png
    3.2 KB · Views: 131
Mathematics news on Phys.org
Daugava said:
Square-shaped piece of paper is intended to make a regular octagon through the cutting of the vertices of a square.
The length of the piece of paper is 29 cm.
How long triangle cathetus have to be cut off from the vertices of the square?
Calculate the octagonal side length, circumference, and area.
Sorry for my english, if it's not understandable I'll try to explain it better.. but how do I do this?
Hi Daugava, and welcome to MHB!

You want to cut four triangles from the square of paper. Suppose that the shorter sides of these triangles have length $x$ cm. Then the hypotenuse of the triangle will be $\sqrt2x$ cm. After cutting off the triangles, the sides of the square will have been shortened by $2x$ cm. You want all the sides of the resulting octagon to have the same length. That implies that $\sqrt2x = 29 - 2x$. Solve that equation to find the octagonal side length. It should then be easy to find the circumference of the octagon. For the area of the octagon, subtract the area of the four triangles from the area of the square.
 
So the side length is 12 cm
a = 12 cm
Area is 2*(1+sqrt2)a^2 = 695,3 cm^2
Circumference is 8*a = 96 cm
Is this right?
But how do I find out how long the triangle cathetus/sides are that were cut off from the vertices of the square?
Is the cut off 8,5 cm?
 
Last edited:
Daugava said:
So the side length is 12 cm
a = 12 cm
Area is 2*(1+sqrt2)a^2 = 695,3 cm^2
Circumference is 8*a = 96 cm
Is this right?
But how do I find out how long the triangle cathetus/sides are that were cut off from the vertices of the square?
Is the cut off 8,5 cm?
Thank you for teaching me a new word in my own language! I did not know that a cathetus is one of the perpendicular sides of a right-angled triangle.

The side length is not precisely 12. In fact, it is $29(\sqrt2-1)$, which is approximately 12.012. The perimeter is approximately 96.0975.

The value for the cathetus comes from my previous comment above. If the cathetus is $x$ cm, then $\sqrt2x = 29 - 2x$. Solve that equation to get $x = \dfrac{29}{2+\sqrt2}.$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top