Find Solutions to a+b+c+d=4, a^2+b^2+c^2+d^2=6, a^3+b^3+c^3+d^3=94/9 in [0,2]

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the system of equations defined by \(a+b+c+d=4\), \(a^2+b^2+c^2+d^2=6\), and \(a^3+b^3+c^3+d^3=\frac{94}{9}\) within the interval \([0, 2]\). Participants emphasize the importance of using algebraic techniques and numerical methods to find all valid solutions. The conversation highlights the contributions of user Opalg, who provided insights into the problem-solving process.

PREREQUISITES
  • Understanding of algebraic equations and systems of equations
  • Familiarity with polynomial functions and their properties
  • Knowledge of numerical methods for finding roots
  • Basic skills in interval analysis
NEXT STEPS
  • Explore methods for solving polynomial equations using numerical techniques
  • Study the properties of symmetric sums in algebra
  • Learn about interval arithmetic and its applications in root-finding
  • Investigate the use of software tools like MATLAB or Python for numerical analysis
USEFUL FOR

Mathematicians, educators, and students interested in algebraic problem-solving, particularly those focused on systems of equations and numerical methods.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the solutions to the system

$a+b+c+d=4\\a^2+b^2+c^2+d^2=6\\a^3+b^3+c^3+d^3=\dfrac{94}{9}$
in $[0, 2]$.
 
Mathematics news on Phys.org
anemone said:
Find all the solutions to the system $p_1 = a+b+c+d=4\\p_2 = a^2+b^2+c^2+d^2=6\\ p_3 = a^3+b^3+c^3+d^3=\dfrac{94}{9}$ in $[0, 2]$.
Let $x^4 - e_1x^3 + e_2x^2 - e_3x + e_4 = 0$ be the equation with roots $a,b,c,d$. By Newton's identities, $$\textstyle e_1 = p_1 = 4,\qquad e_2 = \frac12(p_1^2 - p_2) = \frac12(16 - 6) = 5,\qquad e_3 = \frac16(p_1^3 - 3p_1p_2 + 2p_3) = \frac16(64 - 72 + \frac{188}9) = \frac{58}{27}.$$ So the equation is $x^4 - 4x^3 + 5x^2 - \frac{58}{27}x + e_4 = 0$. Since $58$ is close to twice $27$, write the equation as $$x^4 - 4x^3 + 5x^2 - 2x = \tfrac4{27}x - e_4, \\ x(x-2)(x^2 - 2x + 1) = \tfrac4{27}(x-s),$$ where $s$ is a constant. Now look at the graph:

[DESMOS]{"version":7,"graph":{"viewport":{"xmin":-0.47946479454949004,"ymin":-1.7930541038513184,"xmax":2.51919243201301,"ymax":1.9552674293518066}},"randomSeed":"5a5979bd9ad99a52fd1cfa25e8de4160","expressions":{"list":[{"type":"expression","id":"1","color":"#c74440","latex":"x^{4}-4x^{3}+5x^{2}-2x"},{"type":"expression","id":"2","color":"#2d70b3","latex":"\\frac{4}{27}\\left(x-s\\right)"},{"type":"expression","id":"4","color":"#6042a6","latex":"s=2","hidden":true,"slider":{"hardMin":true,"hardMax":true,"min":"1","max":"3","step":"0.1"}},{"type":"expression","id":"5","color":"#000000"}]}}[/DESMOS]
The roots of the equation are the points where the blue line meets the red curve. By using the slider, you can see that if $s<2$ then the largest root is greater than $2$. But if $s>2$ then the blue line goes lower, and only meets the red curve in two points, which means that two of the roots of the quartic equation are complex. So for the equation to have four real roots in the interval $[0,2]$, $s$ must be equal to $2$. After multiplying by $27$ the equation then becomes $(x-2)(27x^3 - 54x^2 + 27x - 4) = 0$, which factorises as $(3x-1)^2(3x-4)(x-2) = 0$. Therefore the solutions to the system are $\{a,b,c,d\} = \{\frac13,\frac13,\frac43,2\}$ (in any order).
 
Awesome, Opalg!(Cool) And thanks for participating!

I will start from the quartic equation $p(x)=x^4-4x^3+5x^2-\dfrac{58}{27}x+k$ where $p(x)$ has roots $a, b, c, d$.

$p'(x)=4x^3-12x^2+10x-\dfrac{58}{27}=\dfrac{2}{27}(3x-1)(18x^2-48x+29)$

Solving $p/(x)=0$ gives $x=\dfrac{1}{3},\,\dfrac{4}{3}\pm\dfrac{\sqrt{6}}{2}$.

Since $p(x)$ is a 4th degree polynomial with positive leading coefficient and $p'(x)$ has 3 distinct real roots in $(0, 2)$, it follows that in order for $a, b, c, d$ to be solutions of the given equations where $0\le a, b, c, d\le 2$, we must have

$p(0)\ge 0,\,p\left(\dfrac{1}{3}\right)\le0,\,p\left(\dfrac{4}{3}-\dfrac{\sqrt{6}}{2}\right)\ge0,\, p\left(\dfrac{4}{3}+\dfrac{\sqrt{6}}{2}\right)\le0,\,p(2)\ge 0$

Evaluating, we find $p\left(\dfrac{1}{3}\right)=p(2)=k-\dfrac{8}{27}$. Hence, $k=\dfrac{8}{27}$, from which we obtain

$\begin{align*}p(x)&=x^4-4x^3+5x^2-\dfrac{58}{27}x+\dfrac{8}{27}\\&=\dfrac{1}{27}(27x^4-108x^3+135x^2-58x+8)\\&=\dfrac{1}{27}(3x-1)^2(3x-4)(x-2)\end{align*}$

Therefore, the solutions in $[0, 2]$ are the 12 permutations of $\left(\dfrac{1}{3},\, \dfrac{1}{3},\, \dfrac{4}{3},\,2 \right)$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K