find_the_fun
- 147
- 0
$$x=c_1 cos(t)+c_2sin(t)$$ is a family of solution to $$x''+x=0$$. Given $$x(\frac{\pi}{6})=\frac{1}{2}$$ and $$x'(\frac{\pi}{6})=0$$ find a solution to the second order IVP consisting of this differential equation and the given intial conditions.
The answer key has [math]x=\frac{\sqrt{3}}{4}cos(t)+\frac{1}{4}sin(t)[/math] which isn't what I'm getting.
So using the first initial condition we know [math]\frac{1}{2}=c_1cos\frac{\pi}{6}+c_2sin\frac{\pi}{6}[/math] gives [math]c_2=1-c_1\sqrt{3}[/math] So [math]x=c_1 cost+(1-c_1 \sqrt{3})sin(t)=c_1 cos(t)+sin(t)-c_1\sqrt{3}sin(t)[/math]
and it's derivative is [math]x'=-c_1sin(t)+cos(t)-c_1 \sqrt{3}cos(t)[/math]
Applying$$ x'(\frac{\pi}{6})=0 $$gives [math]0=-c_1 sin \frac{\pi}{6}+cos\frac{\pi}{6}-c+1\sqrt{3}cos\frac{\pi}{6}[/math] which gives [math]c_1=\frac{\sqrt{3}-1}{3}[/math] and then [math]c_2=1-c_1\sqrt{3}=1-\frac{\sqrt{3}-1}{3} \cdot \sqrt{3}[/math] Where am I going wrong?
The answer key has [math]x=\frac{\sqrt{3}}{4}cos(t)+\frac{1}{4}sin(t)[/math] which isn't what I'm getting.
So using the first initial condition we know [math]\frac{1}{2}=c_1cos\frac{\pi}{6}+c_2sin\frac{\pi}{6}[/math] gives [math]c_2=1-c_1\sqrt{3}[/math] So [math]x=c_1 cost+(1-c_1 \sqrt{3})sin(t)=c_1 cos(t)+sin(t)-c_1\sqrt{3}sin(t)[/math]
and it's derivative is [math]x'=-c_1sin(t)+cos(t)-c_1 \sqrt{3}cos(t)[/math]
Applying$$ x'(\frac{\pi}{6})=0 $$gives [math]0=-c_1 sin \frac{\pi}{6}+cos\frac{\pi}{6}-c+1\sqrt{3}cos\frac{\pi}{6}[/math] which gives [math]c_1=\frac{\sqrt{3}-1}{3}[/math] and then [math]c_2=1-c_1\sqrt{3}=1-\frac{\sqrt{3}-1}{3} \cdot \sqrt{3}[/math] Where am I going wrong?
Last edited: