MHB Find $\sqrt{ABBCDC}:$ A,B,C,D Distinct, $CDC-ABB=25$

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The problem involves finding the square root of a 6-digit number represented as $\overline{ABBCDC}$, where $ABB$ and $CDC$ are distinct 3-digit numbers satisfying the equation $CDC - ABB = 25$. Additionally, the digits A, B, C, and D must all be distinct. The discussion explores the implications of removing the restriction on the difference between $CDC$ and $ABB$ and questions how many solutions would exist without that condition. Ultimately, the goal is to determine $\sqrt{ABBCDC}$ under the given constraints.
Albert1
Messages
1,221
Reaction score
0
$\overline{ABB},$ and $\overline{CDC}$
are two 3-digit numbers ,
giving :
(1)$CDC-ABB=25$
(2)$\overline{ABBCDC}$ (6-digit number) is a perfect square
please find :$\sqrt{ABBCDC}$
(here A,B,C,D are distinct)
 
Last edited:
Mathematics news on Phys.org
Hello, Albert!

$ABB,$ and $CDC$ are two 3-digit numbers, such that:

(1) $CDC-ABB\,=\,25$

(2) $\overline{ABBCDC}$ (6-digit number) is a perfect square.

Find: $\sqrt{ABBCDC}$
(where A,B,C,D are distinct digits)
From (1), we have the alphametic: $\;\begin{array}{cccc} & C&D&C \\ -&A&B&B \\ \hline &&2&5\end{array}$

There are only 3 solutions.

$[1]\;\begin{array}{cccc} & 2&0&2 \\ - &1&7&7 \\ \hline &&2&5\end{array}$

$\qquad$But $ABBCDC \,=\,117,\!202$ is not a square.$[2]\;\begin{array}{cccc}&3&1&3 \\ -&2&8&8 \\ \hline && 2&5 \end{array}$

$\qquad$But $ABBCDC \,=\,288,\!313$ is not a square.$[3]\;\begin{array}{cccc}&4&2&4 \\ - & 3&9&9 \\ \hline && 2&5 \end{array}$

$\qquad$And $\sqrt{ABBCDC} \:=\:\sqrt{399,\!424} \;=\;632$
 
soroban said:
Hello, Albert!
From (1), we have the alphametic: $\;\begin{array}{cccc} & C&D&C \\ -&A&B&B \\ \hline &&2&5\end{array}$There are only 3 solutions.$[1]\;\begin{array}{cccc} & 2&0&2 \\ - &1&7&7 \\ \hline &&2&5\end{array}$$\qquad$But $ABBCDC \,=\,117,\!202$ is not a square.$[2]\;\begin{array}{cccc}&3&1&3 \\ -&2&8&8 \\ \hline && 2&5 \end{array}$$\qquad$But $ABBCDC \,=\,288,\!313$ is not a square.$[3]\;\begin{array}{cccc}&4&2&4 \\ - & 3&9&9 \\ \hline && 2&5 \end{array}$$\qquad$And $\sqrt{ABBCDC} \:=\:\sqrt{399,\!424} \;=\;632$
perfect !
 
Albert said:
$\overline{ABB},$ and $\overline{CDC}$
are two 3-digit numbers ,
giving :
(1)$CDC-ABB=25$
(2)$\overline{ABBCDC}$ (6-digit number) is a perfect square
please find :$\sqrt{ABBCDC}$
(here A,B,C,D are distinct)
If restriction (1)CDC-ABB=25 is taken away
how many soluions we can find ?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top