MHB Find the area of the red region

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The diagram below (which is not drawn to scale) shows a parallelogram. The area of the green regions are 8 unit² , 10 unit² , 72 unit² and 79 unit² respectively. Find the area of the red region.

[TIKZ]
\coordinate (A) at (0,0);
\coordinate (B) at (8,0);
\coordinate (C) at (12,0);
\coordinate (D) at (12.75,3);
\coordinate (E) at (14,8);
\coordinate (F) at (6,8);
\coordinate (G) at (2,8);
\coordinate[label=above: \huge 79] (P) at (4.5,3);
\coordinate[label=above: \huge 72] (Q) at (9.5,6);
\coordinate[label=above: \large 8] (R) at (8.5,1.2);
\coordinate[label=above: \large 10] (S) at (11,2.9);
\draw (A) -- (C)-- (E) -- (G) -- (A);
\draw (A) -- (F);
\draw (A) -- (D);
\draw (B) -- (F);
\draw (B) -- (E);
\draw (D) -- (G);
\draw[fill=teal] (0,0) -- (7.564,1.745) -- (6.513,5.949) -- (4.983,6.644);
\draw[fill=teal] (6,8) -- (6.508,5.931) -- (10.93,3.85) -- (14,8);
\draw[fill=teal] (8,0) -- (7.564,1.76) -- (9.674,2.25);
\draw[fill=teal] (10.92,3.89) -- (12.75,3) -- (9.674,2.25);
\draw[fill=teal] (4.5,3) node[text=pink] {\huge 79};
\draw[fill=teal] (9.5,6) node[text=pink] {\huge 72};
\draw[fill=teal] (8.5,1.2) node[text=pink] {\large 8};
\draw[fill=teal] (11,2.9) node[text=pink] {\large 10};
\draw[fill=magenta] (2,8) -- (4.983,6.644) -- (6,8);
[/TIKZ]
 
Last edited:
Mathematics news on Phys.org
Area of triangle
 
[TIKZ]
\coordinate (A) at (0,0);
\coordinate (B) at (8,0);
\coordinate (C) at (12,0);
\coordinate (D) at (12.75,3);
\coordinate (E) at (14,8);
\coordinate (F) at (6,8);
\coordinate (G) at (2,8);
\coordinate[label=above: \huge 79] (P) at (4.5,3);
\coordinate[label=above: \huge 72] (Q) at (9.5,6);
\coordinate[label=above: \large 8] (R) at (8.5,1.2);
\coordinate[label=above: \large 10] (S) at (11,2.9);
\coordinate[label=above: \huge A] (M) at (2.5,5);
\coordinate[label=above: \huge B] (N) at (6,0.48);
\coordinate[label=above: \huge C] (Z) at (5.8,6.8);
\coordinate[label=above: \huge D] (J) at (8.5,3.2);
\coordinate[label=above: \huge E] (K) at (10.5,0.9);
\coordinate[label=above: \huge F] (I) at (12.2,4.2);
\draw (A) -- (C)-- (E) -- (G) -- (A);
\draw (A) -- (F);
\draw (A) -- (D);
\draw (B) -- (F);
\draw (B) -- (E);
\draw (D) -- (G);
\draw[fill=teal] (0,0) -- (7.564,1.745) -- (6.513,5.949) -- (4.983,6.644);
\draw[fill=teal] (6,8) -- (6.508,5.931) -- (10.93,3.85) -- (14,8);
\draw[fill=teal] (8,0) -- (7.564,1.76) -- (9.674,2.25);
\draw[fill=teal] (10.92,3.89) -- (12.75,3) -- (9.674,2.25);
\draw[fill=teal] (4.5,3) node[text=pink] {\huge 79};
\draw[fill=teal] (9.5,6) node[text=pink] {\huge 72};
\draw[fill=teal] (8.5,1.2) node[text=pink] {\large 8};
\draw[fill=teal] (11,2.9) node[text=pink] {\large 10};
\draw[fill=magenta] (2,8) -- (4.983,6.644) -- (6,8);
[/TIKZ]

If we look at the parallelogram in such a way that the horizontal sides are the base, then we have

$\normalsize \text{Area of B}+\text{Area of C}+79+\text{Area of E}+\text{Area of F}+10=\text{Area of A}+\text{Area of red region}+72+8+\text{Area of D}$

If we look at the parallelogram in such a way that the slanted sides are the base, then we have

$\normalsize \text{Area of B}+\text{Area of E}+8+\text{Area of F}+\text{Area of C}+72+\text{Area of red region}=\text{Area of A}+79+10+\text{Area of D}$

Subtracting the below from the above we get

$ 9-\text{Area of red region}=-9+\text{Area of red region}\\ \\ \therefore \text{Area of red region}=9$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
Back
Top