Find the derivative of the given function

Click For Summary
SUMMARY

The discussion focuses on finding the derivative of the function \( y = \frac{x^5}{(1-10x)\sqrt{x^2+2}} \). The participants detail the differentiation process, ultimately arriving at the expression \( \frac{5x^4(1-10x)(x^2+2)+(10x^6(x^2+2))-x^6(1-10x)}{[(1-10x)^2(\sqrt{x^2+2})^3]} \). They also suggest using logarithmic differentiation to simplify the process, emphasizing the importance of simplifying logarithmic terms before differentiation to reduce complexity.

PREREQUISITES
  • Understanding of calculus, specifically differentiation techniques
  • Familiarity with logarithmic differentiation
  • Knowledge of the chain rule and product rule in calculus
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the application of logarithmic differentiation in complex functions
  • Practice simplifying logarithmic expressions before differentiation
  • Explore advanced differentiation techniques, including implicit differentiation
  • Review the chain rule and product rule in detail for better application
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as educators looking for effective teaching strategies for differentiation techniques.

chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
See attached( I want to attempt the problem using quotient and product rule).
Relevant Equations
Differentiation
1692280784218.png


1692280869222.png


Let's see how messy it gets...

##\dfrac{dy}{dx}=\dfrac{(1-10x)(\sqrt{x^2+2})5x^4 -(x^5)(-10)(\sqrt{x^2+2})-x^5(1-10x)\frac{1}{2}(x^2+2)^{-\frac{1}{2}}2x}{[(1-10x)(\sqrt{x^2+2})]^2}##

##\dfrac{dy}{dx}=\dfrac{5x^4(1-10x)(x^2+2)+(10x^5(x^2+2))-x^6(1-10x)}{\sqrt{x^2+2}}⋅\dfrac{1}{[(1-10x)(\sqrt{x^2+2})]^2}####\dfrac{dy}{dx}=\dfrac{5x^4(1-10x)(x^2+2)+(10x^5(x^2+2))-x^6(1-10x)}{\sqrt{x^2+2}}⋅\dfrac{1}{[(1-10x)^2(\sqrt{x^2+2})^2]}##

##\dfrac{dy}{dx}=\dfrac{5x^4(1-10x)(x^2+2)+(10x^5(x^2+2))-x^6(1-10x)}{[(1-10x)^2(\sqrt{x^2+2})^3]}##

##\dfrac{dy}{dx}=\dfrac{5x^4}{(1-10x)\sqrt{x^2+2}}+\dfrac{10x^5}{[(1-10x)^2\sqrt{x^2+2}}-\dfrac{x^6}{[(1-10x)\sqrt{x^2+2})^3]}##

Factoring out ##\dfrac{1}{(1-10x)\sqrt{x^2+2}}## will give the desired result.

Bingo!! :cool:
 
Last edited:
Physics news on Phys.org
chwala said:
Let's see how messy it gets...

##\dfrac{dy}{dx}=\dfrac{(1-10x)(\sqrt{x^2+2})5x^4 -(x^5)(-10x)(\sqrt{x^2+2})-x^5(1-10x)\frac{1}{2}(x^2+2)^{-\frac{1}{2}}2x}{[(1-10x)(\sqrt{x^2+2})]^2}##

##\dfrac{dy}{dx}=\dfrac{5x^4(1-10x)(x^2+2)+(10x^6(x^2+2))-x^6(1-10x)}{\sqrt{x^2+2}}⋅\dfrac{1}{[(1-10x)(\sqrt{x^2+2})]^2}##

##\dfrac{dy}{dx}=\dfrac{5x^4(1-10x)(x^2+2)+(10x^6(x^2+2))-x^6(1-10x)}{\sqrt{x^2+2}}⋅\dfrac{1}{[(1-10x)^2(\sqrt{x^2+2})^2]}##

checking latex a minute
That's pretty messy. The logarithmic differentiation that was recommended seems to be a lot simpler.
 
Mark44 said:
That's pretty messy. The logarithmic differentiation that was recommended seems to be a lot simpler.
True...just a little exercise for the brain... :cool:
 
I'd just like to note that, in the proposed solution by taking logs before differentiating, one should first simplify \ln(x^5) = 5 \ln x and \ln(\sqrt{x^2 + 2}) = \frac12\ln(x^2 + 2) before taking the derivative, thereby saving an application of the chain rule.
 
Last edited:
  • Like
Likes PhDeezNutz and chwala

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 14 ·
Replies
14
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K