Find the expected value of a coin flipping game

Click For Summary

Homework Help Overview

The discussion revolves around a coin flipping game involving six coins, where the payout depends on the number of heads obtained. The original poster outlines the rules and calculations related to expected values based on different outcomes of heads.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the implications of getting exactly 3 heads and question the completeness of the problem statement. They also discuss the calculation of probabilities and expected values, with some suggesting corrections to earlier calculations.

Discussion Status

There is an ongoing exploration of the expected value calculations, with participants providing different interpretations and corrections. Some participants have suggested that the expected value might be too high and have proposed alternative calculations. The discussion remains active with no clear consensus yet.

Contextual Notes

Participants note that the problem may not be fully specified, particularly regarding the outcome for exactly 3 heads. Additionally, there are mentions of potential errors in probability calculations that could affect the expected value results.

docnet
Messages
796
Reaction score
486
Homework Statement
.
Relevant Equations
.
Screen Shot 2021-11-09 at 9.38.36 AM.png

summary: you toss six coins. if you have 3 heads, you don't get any money. if you have 4 or more heads, you get the number of heads amount of dollars. if you have 2 or less heads, you toss six coins again and get the number of heads amount of dollars.

the number of ways to get 0 head ##\frac{6!}{(6)!1!}=1##
the number of ways to get 1 head ##\frac{6!}{(6-1)!1!}=6##
the number of ways to get 2 heads ##\frac{6!}{(6-2)!2!}=15##
the number of ways to get 3 heads ##\frac{6!}{(6-3)!3!}=20##
the number of ways to get 4 heads ##\frac{6!}{(6-4)!4!}=15##
the number of ways to get 5 heads ##\frac{6!}{(6-2)!2!}=6##
the number of ways to get 6 heads ##\frac{6!}{(6-2)!2!}=1##

$$P(X<3)=\frac{22}{2^6}$$
$$P(X=3)=\frac{20}{2^6}$$
$$P(X>3)=\frac{22}{2^6}$$

$$E(X<3)=E(X)=3$$
$$E(X=3)=0$$
$$E(X>3)=\frac{15}{21}\cdot 4+\frac{6}{21}\cdot 5+\frac{1}{21}\cdot 6=\frac{32}{7}$$

the expected value of the game is
$$P(X<3)E(X<3)+P(X=3)E(X=3)+P(X>3)E(X>3)$$
$$=\frac{22}{2^6}\cdot 3 +\frac{20}{2^6}\cdot 0 + \frac{22}{2^6} \frac{32}{7}=\frac{583}{224}\approx 2.6$$
 
Physics news on Phys.org
If I was given this question, the first thing I would say is "what happens if you get exactly 3 heads?" The question doesn't say. You seem to be assuming this means you get nothing, but is that correct? I'd say the game is not fully specified.
PS in calculating E(X>3), the probabilities should be 15/22 etc., not 15/21 etc.
 
  • Like
Likes   Reactions: Master1022, docnet and FactChecker
mjc123 said:
If I was given this question, the first thing I would say is "what happens if you get exactly 3 heads?" The question doesn't say. You seem to be assuming this means you get nothing, but is that correct? I'd say the game is not fully specified.
PS in calculating E(X>3), the probabilities should be 15/22 etc., not 15/21 etc.
oops yes rhat was a mistake. It turns out my professor changed the prompt to "equal to greater than 3 heads".$$P(X\geq 3)=\frac{42}{2^6}$$
$$E(X\geq 3)=\frac{20}{22}\cdot 3+\frac{15}{22}\cdot 4+\frac{6}{22}\cdot 5+\frac{1}{22}\cdot 6=\frac{78}{11}$$

the expected value of the game is
$$\frac{22}{2^6}\cdot 3 +\frac{42}{2^6}\frac{78}{11}= \frac{2001}{352}\approx5.68$$
 
docnet said:
oops yes rhat was a mistake. It turns out my professor changed the prompt to "equal to greater than 3 heads".$$P(X\geq 3)=\frac{42}{2^6}$$
$$E(X\geq 3)=\frac{20}{22}\cdot 3+\frac{15}{22}\cdot 4+\frac{6}{22}\cdot 5+\frac{1}{22}\cdot 6=\frac{78}{11}$$

the expected value of the game is
$$\frac{22}{2^6}\cdot 3 +\frac{42}{2^6}\frac{78}{11}= \frac{2001}{352}\approx5.68$$
Can you write a computer simulation to check that?

In any case, that number must be too high. It means you're getting 5-6 heads almost every time.
 
  • Like
Likes   Reactions: docnet
PeroK said:
Can you write a computer simulation to check that?

In any case, that number must be too high. It means you're getting 5-6 heads almost every time.
ahhhhh! I forgot to divide everything in ##E(X\geq 3)## by 42 instead of 22 so ##E(x\geq 3)## is smaller.

$$E(X\geq 3)=\frac{20}{42}\cdot 3+\frac{15}{42}\cdot 4+\frac{6}{42}\cdot 5+\frac{1}{42}\cdot 6=\frac{26}{7}$$

the expected value of the game is
$$\frac{22}{2^6}\cdot 3 +\frac{42}{2^6}\frac{26}{7}\approx 3.46$$

And I have never tried writing a computer simulation to check my answers. I wouldn't know where to start, tbh.
 
  • Like
Likes   Reactions: PeroK
docnet said:
ahhhhh! I forgot to divide everything in ##E(X\geq 3)## by 42 instead of 22 so ##E(x\geq 3)## is smaller.

$$E(X\geq 3)=\frac{20}{42}\cdot 3+\frac{15}{42}\cdot 4+\frac{6}{42}\cdot 5+\frac{1}{42}\cdot 6=\frac{26}{7}$$

the expected value of the game is
$$\frac{22}{2^6}\cdot 3 +\frac{42}{2^6}\frac{26}{7}\approx 3.46$$

And I have never tried writing a computer simulation to check my answers. I wouldn't know where to start, tbh.

I think it's easier to observe that if you get fewer than 3 heads the first time, you play a game whose expected outcome is $3 and if you get at least 3 heads the first time you get an amount equal to the number of heads. So the expectation should be <br /> \frac{22}{2^6} \cdot 3 + \frac{1}{2^6}\left( 20 \cdot 3 + 15\cdot 4 + 6 \cdot 5 + 6 \right) which is your result.

However, rather than do that calculation I would say that the expected number of heads from flipping six coins is 3 and this game has a strictly higher expectation. So at $3 I know my expected outcome is positive.
 
pasmith said:
So the expectation should be <br /> \frac{22}{2^6} \cdot 3 + \frac{1}{2^6}\left( 20 \cdot 3 + 15\cdot 4 + 6 \cdot 5 + 6 \right).
That is the calculation that leads to ##3.46##.
 
another approach, binomial with ... n=6 ... k=0, 1, 2 ... p=0.5

P = [n! / (k! * (n-k)!)] * [(p**k) * (p**(n-k))]

2nd portion in square brackets will always be .01563 when p=0.5 and n=6

P(0) = [6! / (0! * 6!)] * .0156 = 1 * .0156 = .01563
P(1) = [6! / (1! * 5!)] * .0156 = 6 * .0156 = .09378
P(2) = [6! / (2! * 4!)] * .0156 = 15 * .0156 = .23445

P(3+) = 1 - 01563 - .09378 - .24445 = .65614
 
Last edited:

Similar threads

  • · Replies 29 ·
Replies
29
Views
7K
  • · Replies 53 ·
2
Replies
53
Views
10K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
Replies
4
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K