Hi guys... this problem is really annoying me(adsbygoogle = window.adsbygoogle || []).push({});

How to find:

[tex]\displaystyle{\sum_{k=0}^{n}\frac{1}{2^k+3^k}}[/tex]

I can clearly see that it converges

[tex]\frac{1}{3^k+3^k}<\frac{1}{2^k+3^k}<\frac{1}{2^k+2^k}[/tex]

[tex]\sum_{k=0}^{\infty}\frac{1}{3^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+2^k}[/tex]

[tex]\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{3^k}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\sum_{k=0}^{\infty}\frac{1}{2^k}[/tex]

[tex]\frac{1}{2}\frac{1}{1-1/3}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<\frac{1}{2}\frac{1}{1-1/2}[/tex]

[tex]\frac{3}{4}<\sum_{k=0}^{\infty}\frac{1}{2^k+3^k}<1[/tex]

But how do I find the general expression from k=0 to 'n' or even the exact value as n goes to infinity?

Thanks in advance

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Find the general expression from k=0 to 'n'

**Physics Forums | Science Articles, Homework Help, Discussion**