MHB Find the greatest positive integer

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integer Positive
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the greatest positive integer $x$ such that $x^3+4x^2-15x-18$ is the cube of an integer.
 
Mathematics news on Phys.org
anemone said:
Find the greatest positive integer $x$ such that $x^3+4x^2-15x-18$ is the cube of an integer.
I had a slice of luck here
x must satisfy

$x^3 + 4x^2 - 15 x - 18 \le (x+1)^3$

or $x^2-18x - 19 \le 0$
so x = 19 makes the RHS 0

so x = 19 is the ans because we get a perfect square ( things would have been different had we not got integer)
 
Well done, kaliprasad!(Yes)

The trick is to recognize that the given expression is less than or equal to $(x+1)^3$.

Thanks for participating as well, my friend!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top