MHB Find the greatest possible value of tan B.

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Tan Value
Click For Summary
The equation for tan B is derived from the relationship between angles A and B, leading to the expression tan B = 2015 sin A cos A / (1 + 2015 sin^2 A). To find the maximum value of tan B, the cotangent of B is minimized, which involves differentiating the cot B expression. The critical point occurs when sin A equals 1/sqrt(2017) and cos A equals sqrt(2016)/sqrt(2017). Substituting these values yields the maximum tan B as approximately 22.4388. The final result is expressed as 2015/(2√2016).
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $A,\,B$ be acute angles such that $\tan B=2015\sin A \cos A-2015\sin^2 A \tan B$.

Find the greatest possible value of $\tan B$.
 
Mathematics news on Phys.org
anemone said:
Let $A,\,B$ be acute angles such that $\tan B=2015\sin A \cos A-2015\sin^2 A \tan B$.

Find the greatest possible value of $\tan B$.
[sp]Let $n = 2015.$ Then $\tan B(1 + n\sin^2 A) = n\sin A\cos A$. Therefore $\tan B = \dfrac{n\sin A\cos A}{1 + n\sin^2 A}$ and so $$\cot B = \frac{1 + n\sin^2 A}{n\sin A\cos A} = \frac2{n\sin (2A)} + \tan A.$$ To maximise $\tan B$ we need to minimise $\cot B$ (the reason for doing this is that $\cot B$ is easier to differentiate than $\tan B$), so let's differentiate it: $$\frac d{dA}\cot B = -\frac{4\cos(2A)}{n\sin^2(2A)} + \frac1{\cos^2 A} = \frac{-\cos(2A) + n\sin^2A}{n\sin^2A\cos^2A}.$$ That is zero when $0 = -\cos(2A) + n\sin^2A = -1 + (n+2)\sin^2A$, so that $\sin A = \dfrac1{\sqrt{n+2}}$ and $\cos A = \dfrac{\sqrt{n+1}}{\sqrt{n+2}}.$

The corresponding (maximal) value of $\tan B$ is $$\frac{\frac{n\sqrt{n+1}}{n+2}}{1 + \frac{n}{n+2}} = \frac{n\sqrt{n+1}}{2(n+1)} = \frac n{2\sqrt{n+1}}.$$ With $n=2015$ that gives the maximum value of $\tan B$ as $\dfrac{2015}{2\sqrt{2016}} = \dfrac{2015}{24\sqrt{14}} \approx 22.4388.$[/sp]
 
Opalg said:
[sp]Let $n = 2015.$ Then $\tan B(1 + n\sin^2 A) = n\sin A\cos A$. Therefore $\tan B = \dfrac{n\sin A\cos A}{1 + n\sin^2 A}$ and so $$\cot B = \frac{1 + n\sin^2 A}{n\sin A\cos A} = \frac2{n\sin (2A)} + \tan A.$$ To maximise $\tan B$ we need to minimise $\cot B$ (the reason for doing this is that $\cot B$ is easier to differentiate than $\tan B$), so let's differentiate it: $$\frac d{dA}\cot B = -\frac{4\cos(2A)}{n\sin^2(2A)} + \frac1{\cos^2 A} = \frac{-\cos(2A) + n\sin^2A}{n\sin^2A\cos^2A}.$$ That is zero when $0 = -\cos(2A) + n\sin^2A = -1 + (n+2)\sin^2A$, so that $\sin A = \dfrac1{\sqrt{n+2}}$ and $\cos A = \dfrac{\sqrt{n+1}}{\sqrt{n+2}}.$

The corresponding (maximal) value of $\tan B$ is $$\frac{\frac{n\sqrt{n+1}}{n+2}}{1 + \frac{n}{n+2}} = \frac{n\sqrt{n+1}}{2(n+1)} = \frac n{2\sqrt{n+1}}.$$ With $n=2015$ that gives the maximum value of $\tan B$ as $\dfrac{2015}{2\sqrt{2016}} = \dfrac{2015}{24\sqrt{14}} \approx 22.4388.$[/sp]

Aww Opalg! Thanks for participating in this other Olympiad Math problem from Hong Kong and your answer is of course correct! I will wait for a couple of days before posting the proposed solution.:)
 
Solution of other:
$\tan B=2015\sin A \cos A-2015\sin^2 A \tan B$

$\dfrac{\sin B}{\cos B}=2015\sin A \cos A-2015\sin^2 A \left(\dfrac{\sin B}{\cos B}\right)$

$\begin{align*}\sin B&=2015\sin A \cos A\cos B-2015\sin^2 A\sin B\\&=2015\sin A( \cos A\cos B-\sin A\sin B)\\&=2015\sin A( \cos (A+B)\\&=2015\left(\dfrac{\sin (2A+B)-\sin B}{2}\right)\end{align*}$

$\therefore \left(1+\dfrac{2015}{2}\right)\sin B=\dfrac{2015}{2}\sin (2A+B)$

And we get

$\sin B=\dfrac{2015}{2017}\sin (2A+B)$

Since $\sin B\le \dfrac{2015}{2017}$, that implies $\tan B\le \dfrac{2015}{\sqrt{2017^2-2015^2}}=\dfrac{2015}{24\sqrt{14}}$.

Equality is attained when $\sin (2A+B)=1$, that is when $2A+B$ is a right angle.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K