MHB Find the image: F: N * N -> R , F(x) = m^2 + 2n

  • Thread starter Thread starter KOO
  • Start date Start date
  • Tags Tags
    Image
AI Thread Summary
The function F: N x N -> R is defined as F(x) = m^2 + 2n, where x = (m, n). The image of F depends on whether zero is included in the natural numbers; if zero is included, the image is N, while if not, the image is N \ {1, 2, 4}. Positive odd numbers greater than or equal to 3 can be generated by pairs (1, n), and positive even numbers greater than or equal to 6 by pairs (2, m). The discussion clarifies the notation used for set difference and the appropriate categorization of the problem within mathematical topics. Understanding these nuances is essential for accurately determining the image of the function.
KOO
Messages
19
Reaction score
0
F:N*N -> R, F(x) = m^2 + 2n

I think the answer is N. Am I right?
 
Mathematics news on Phys.org
KOO said:
I think the answer is N. Am I right?

Based on your title, we have that $F:\mathbb{N}\times\mathbb{N}\rightarrow \mathbb{R}$ ($\mathbb{N}\ast\mathbb{N}$ makes no sense at all) where $F(x) = m^2+2n$ (I assume here that $x=(m,n)$).

Now, depending on who you talk to, $\mathbb{N}$ may or may not include zero (the general consensus from what I've seen is that $0\notin\mathbb{N}$, but there are some professors/authors that include zero in their definition of the natural numbers; hence why I think it's best to clarify this right from the get go); that is, either $\mathbb{N}=\{x\in\mathbb{Z} : x\geq 0\}$ or $\mathbb{N}=\{x\in\mathbb{Z}: x\geq 1\}$.

If $0\in\mathbb{N}$, then $\mathrm{Im}(F)=\mathbb{N}$. If $0\notin\mathbb{N}$, then $\mathrm{Im}(F) = \mathbb{N}\backslash\{1,2,4\}$ since there aren't pairs $(m,n)\in\mathbb{N}\times\mathbb{N}$ such that $m^2+2n=1$, $m^2+2n=2$, or $m^2+2n=4$.

(In $\mathrm{Im}(F)$, note that all the positive odd numbers greater than or equal to 3 are generated by pairs of the form $(1,n)$ for $n\in\mathbb{N}$ since $1^2+2n=2n+1$, and all positive even numbers greater than or equal to 6 are generated by pairs of the form $(2,m)$ for $m\in\mathbb{N}$ since $2^2+2m = 2(m+2)$; this is why I can claim that $F(\mathbb{N}\times\mathbb{N}) = \mathbb{N}\backslash\{1,2,4\}$ for $0\notin\mathbb{N}$.)

I hope this makes sense!
 
Chris L T521 said:
Based on your title, we have that $F:\mathbb{N}\times\mathbb{N}\rightarrow \mathbb{R}$ ($\mathbb{N}\ast\mathbb{N}$ makes no sense at all) where $F(x) = m^2+2n$ (I assume here that $x=(m,n)$).

Now, depending on who you talk to, $\mathbb{N}$ may or may not include zero (the general consensus from what I've seen is that $0\notin\mathbb{N}$, but there are some professors/authors that include zero in their definition of the natural numbers; hence why I think it's best to clarify this right from the get go); that is, either $\mathbb{N}=\{x\in\mathbb{Z} : x\geq 0\}$ or $\mathbb{N}=\{x\in\mathbb{Z}: x\geq 1\}$.

If $0\in\mathbb{N}$, then $\mathrm{Im}(F)=\mathbb{N}$. If $0\notin\mathbb{N}$, then $\mathrm{Im}(F) = \mathbb{N}\backslash\{1,2,4\}$ since there aren't pairs $(m,n)\in\mathbb{N}\times\mathbb{N}$ such that $m^2+2n=1$, $m^2+2n=2$, or $m^2+2n=4$.

(In $\mathrm{Im}(F)$, note that all the positive odd numbers greater than or equal to 3 are generated by pairs of the form $(1,n)$ for $n\in\mathbb{N}$ since $1^2+2n=2n+1$, and all positive even numbers greater than or equal to 6 are generated by pairs of the form $(2,m)$ for $m\in\mathbb{N}$ since $2^2+2m = 2(m+2)$; this is why I can claim that $F(\mathbb{N}\times\mathbb{N}) = \mathbb{N}\backslash\{1,2,4\}$ for $0\notin\mathbb{N}$.)

I hope this makes sense!

Actually I had this question on a test and you're right x=(m,n) and we're told N does not include 0.

Anyways what does \ mean?
 
KOO said:
Actually I had this question on a test and you're right x=(m,n) and we're told N does not include 0.

Anyways what does \ mean?

Ah, that's one notation for set difference. I could have also written it as $\mathbb{N}-\{1,2,4\}$.
 
KOO said:
F:N*N -> R, F(x) = m^2 + 2n

I think the answer is N. Am I right?

I just wanted to let you know that I moved this topic from Calculus to Pre-Calculus (this is a better fit) and copied the problem from the title into the body of the first post. It's okay to put the problem in the title when it is short, but we ask that it also be included in the post as well for clarity. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-sln2)+e^(-sln3)+e^(-sln4)+... , Re(s)>1 If we regards it as some function got from Laplace transformation, and let this real function be ζ(x), that means L[ζ(x)]=ζ(s), then: ζ(x)=L^-1[ζ(s)]=δ(x)+δ(x-ln2)+δ(x-ln3)+δ(x-ln4)+... , this represents a series of Dirac delta functions at the points of x=0, ln2, ln3, ln4, ... , It may be still difficult to understand what ζ(x) means, but once it is integrated, the truth is clear...
Back
Top