MHB Find the image: F: N * N -> R , F(x) = m^2 + 2n

  • Thread starter Thread starter KOO
  • Start date Start date
  • Tags Tags
    Image
Click For Summary
The function F: N x N -> R is defined as F(x) = m^2 + 2n, where x = (m, n). The image of F depends on whether zero is included in the natural numbers; if zero is included, the image is N, while if not, the image is N \ {1, 2, 4}. Positive odd numbers greater than or equal to 3 can be generated by pairs (1, n), and positive even numbers greater than or equal to 6 by pairs (2, m). The discussion clarifies the notation used for set difference and the appropriate categorization of the problem within mathematical topics. Understanding these nuances is essential for accurately determining the image of the function.
KOO
Messages
19
Reaction score
0
F:N*N -> R, F(x) = m^2 + 2n

I think the answer is N. Am I right?
 
Mathematics news on Phys.org
KOO said:
I think the answer is N. Am I right?

Based on your title, we have that $F:\mathbb{N}\times\mathbb{N}\rightarrow \mathbb{R}$ ($\mathbb{N}\ast\mathbb{N}$ makes no sense at all) where $F(x) = m^2+2n$ (I assume here that $x=(m,n)$).

Now, depending on who you talk to, $\mathbb{N}$ may or may not include zero (the general consensus from what I've seen is that $0\notin\mathbb{N}$, but there are some professors/authors that include zero in their definition of the natural numbers; hence why I think it's best to clarify this right from the get go); that is, either $\mathbb{N}=\{x\in\mathbb{Z} : x\geq 0\}$ or $\mathbb{N}=\{x\in\mathbb{Z}: x\geq 1\}$.

If $0\in\mathbb{N}$, then $\mathrm{Im}(F)=\mathbb{N}$. If $0\notin\mathbb{N}$, then $\mathrm{Im}(F) = \mathbb{N}\backslash\{1,2,4\}$ since there aren't pairs $(m,n)\in\mathbb{N}\times\mathbb{N}$ such that $m^2+2n=1$, $m^2+2n=2$, or $m^2+2n=4$.

(In $\mathrm{Im}(F)$, note that all the positive odd numbers greater than or equal to 3 are generated by pairs of the form $(1,n)$ for $n\in\mathbb{N}$ since $1^2+2n=2n+1$, and all positive even numbers greater than or equal to 6 are generated by pairs of the form $(2,m)$ for $m\in\mathbb{N}$ since $2^2+2m = 2(m+2)$; this is why I can claim that $F(\mathbb{N}\times\mathbb{N}) = \mathbb{N}\backslash\{1,2,4\}$ for $0\notin\mathbb{N}$.)

I hope this makes sense!
 
Chris L T521 said:
Based on your title, we have that $F:\mathbb{N}\times\mathbb{N}\rightarrow \mathbb{R}$ ($\mathbb{N}\ast\mathbb{N}$ makes no sense at all) where $F(x) = m^2+2n$ (I assume here that $x=(m,n)$).

Now, depending on who you talk to, $\mathbb{N}$ may or may not include zero (the general consensus from what I've seen is that $0\notin\mathbb{N}$, but there are some professors/authors that include zero in their definition of the natural numbers; hence why I think it's best to clarify this right from the get go); that is, either $\mathbb{N}=\{x\in\mathbb{Z} : x\geq 0\}$ or $\mathbb{N}=\{x\in\mathbb{Z}: x\geq 1\}$.

If $0\in\mathbb{N}$, then $\mathrm{Im}(F)=\mathbb{N}$. If $0\notin\mathbb{N}$, then $\mathrm{Im}(F) = \mathbb{N}\backslash\{1,2,4\}$ since there aren't pairs $(m,n)\in\mathbb{N}\times\mathbb{N}$ such that $m^2+2n=1$, $m^2+2n=2$, or $m^2+2n=4$.

(In $\mathrm{Im}(F)$, note that all the positive odd numbers greater than or equal to 3 are generated by pairs of the form $(1,n)$ for $n\in\mathbb{N}$ since $1^2+2n=2n+1$, and all positive even numbers greater than or equal to 6 are generated by pairs of the form $(2,m)$ for $m\in\mathbb{N}$ since $2^2+2m = 2(m+2)$; this is why I can claim that $F(\mathbb{N}\times\mathbb{N}) = \mathbb{N}\backslash\{1,2,4\}$ for $0\notin\mathbb{N}$.)

I hope this makes sense!

Actually I had this question on a test and you're right x=(m,n) and we're told N does not include 0.

Anyways what does \ mean?
 
KOO said:
Actually I had this question on a test and you're right x=(m,n) and we're told N does not include 0.

Anyways what does \ mean?

Ah, that's one notation for set difference. I could have also written it as $\mathbb{N}-\{1,2,4\}$.
 
KOO said:
F:N*N -> R, F(x) = m^2 + 2n

I think the answer is N. Am I right?

I just wanted to let you know that I moved this topic from Calculus to Pre-Calculus (this is a better fit) and copied the problem from the title into the body of the first post. It's okay to put the problem in the title when it is short, but we ask that it also be included in the post as well for clarity. :D
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
925
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K