MHB Find the Inverse of a Vector: Solve for x in Terms of b

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
  • Tags Tags
    Inverse Vector
Click For Summary
The discussion revolves around solving the equation $\sum _{j=1} ^K (x_j - b_j) = 0$, which simplifies to $e^T x = e^T b$. The original problem involves minimizing the function $T(x) = ||y-Ax||^2 + ||x-b||^2$, where the system y = Ax is overdetermined. The user seeks a closed-form solution for the second norm and has differentiated it with respect to $x_j$s, leading to the current equation. Further assistance is requested to find $x$ in terms of b from this point. The focus remains on deriving a solution for the minimum of the second norm.
OhMyMarkov
Messages
81
Reaction score
0
Hello Everyone!

I've been trying to solve an equation and got to this place: $\sum _{j=1} ^K (x_j - b_j) = 0$ which gives $e^T x = e^T b$. Now I need to solve for $x$ i.e. find $x$ in terms of the b. How can I do that?

Thank you for the help!
 
Physics news on Phys.org
OhMyMarkov said:
Hello Everyone!

I've been trying to solve an equation and got to this place: $\sum _{j=1} ^K (x_j - b_j) = 0$ which gives $e^T x = e^T b$. Now I need to solve for $x$ i.e. find $x$ in terms of the b. How can I do that?

Thank you for the help!

Can we have some more context, or perhaps the original problem?

CB
 
Definitely,

The original problem is to find the minimum of the following function: $T(x) = ||y-Ax||^2 + ||x-b||^2$ where the system y = Ax is overdetermined. Of course we already know the closed form solution of the first norm (linear least squares). My question was regarding the second norm. What I want to do is to try to find a closed form solution for the minimum of the second norm, and add the two solutions up. What I did was, similar to the approach of finding the linear least squares solution, differentiate the second norm with respect to $x_j$s and set to zero. I got what is there in my first post, and now I'm stuck there.

Thank you.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 0 ·
Replies
0
Views
837
  • · Replies 26 ·
Replies
26
Views
850
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
999