We might recognize the definition of $\sinh x=\frac 12(e^x-e^{-x})$ and its associates $\cosh x$ and $\tanh x$.
We have $\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$, which is the same as the given $f(x)$.
Therefore $f^{-1}(x)=\tanh^{-1} x=\artanh x$, which happens to be the same as $\frac 12\ln\left(\frac{1+x}{1-x}\right)$ as skeeter showed. See Inverse hyperbolic tangent on wiki.