MHB How to Solve Laplace Transforms with a Fractional Term?

Click For Summary
SUMMARY

The discussion focuses on solving the inverse Laplace transform of the expression \(\mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2}\). Participants confirm that by rewriting the expression, they can utilize known Laplace transform pairs, specifically \(\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)\) and \(\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)\). The final solution is expressed as \(a e^{-\lambda t}\sinh(\omega t) \cdot u(t) + \frac{b+\lambda a}{\omega}e^{-\lambda t}\cosh(\omega t) \cdot u(t)\), demonstrating the application of hyperbolic functions in the context of Laplace transforms.

PREREQUISITES
  • Understanding of Laplace transforms and their properties
  • Familiarity with hyperbolic functions, specifically \(\sinh\) and \(\cosh\)
  • Knowledge of the unit step function \(u(t)\)
  • Ability to manipulate algebraic expressions involving complex variables
NEXT STEPS
  • Study the properties of inverse Laplace transforms in detail
  • Learn about hyperbolic functions and their applications in differential equations
  • Explore the use of the unit step function in Laplace transforms
  • Practice solving more complex Laplace transform problems using various techniques
USEFUL FOR

Students and professionals in engineering, mathematics, and physics who are working with differential equations and need to apply Laplace transforms for problem-solving.

rannasquaer
Messages
6
Reaction score
0
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]
 
Physics news on Phys.org
rannasquaer said:
How to solve the transforms below

\[ \mathscr{L}^{-1} \frac{a(s+2 \lambda)+b}{(s+ \lambda)^2- \omega^2} \]

The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?
 
Klaas van Aarsen said:
The table of Laplace transforms lists that $\mathscr{L}^{-1} \frac{s+\alpha}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\cos(\omega t)\cdot u(t)$ and $\mathscr{L}^{-1} \frac{\omega}{(s+\alpha)^2+\omega^2} = e^{-\alpha t}\sin(\omega t)\cdot u(t)$.

Can we use those to find the requested transform?

I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now
 
rannasquaer said:
I think yes, if I rewrite like

\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} \]

but I have \[ (s+\lambda)^2-\omega^2 \] and not \[ (s+\lambda)^2+\omega^2 \]

The table of Laplace transforms lists that \[ \mathscr{L}^{-1} \frac{\alpha}{s^2- \alpha^2} = \sin h(\alpha t).u(t) \] and \[ \mathscr{L}^{-1} \frac{s}{s^2- \alpha^2} = \cos h(\alpha t).u(t) \]

I do not know what to do now

Right. I meant the $\cosh$ and $\sinh$ versions.

Also note that $\mathscr{L}^{-1} F(s-\alpha)=e^{\alpha t}f(t)$.

So we can do:
\[ \mathscr{L}^{-1} \frac{a(s+\lambda)}{(s+ \lambda)^2- \omega^2} + \mathscr{L}^{-1} \frac{b + \lambda a}{(s+ \lambda)^2- \omega^2} =a e^{-\lambda t}\sinh(\omega t) \cdot u(t)+ \frac{b+\lambda a}{\omega}e^{-\lambda t}\cosh(\omega t) \cdot u(t)\]
And if we want to, we can rewrite it using $\sinh x= \frac 12(e^x-e^{-x})$ and $\cosh x=\frac 12(e^x + e^{-x})$.
 
Great, I understood how to continue to do the math. Thank you!😄
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K