MHB Find the largest value in a sequence

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sequence Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The sequence $$a_1,\;a_2,\;a_3,\cdots$$ is defined by $$a_1=1$$, $$a_{2n}=a_n$$, $$a_{2n+1}=a_{2n}+1$$.

Find the largest value in $$a_1,\;a_2,\;a_3,\cdots,\; a_{1989}$$ and the number of times it occurs.
 
Mathematics news on Phys.org
anemone said:
The sequence $$a_1,\;a_2,\;a_3,\cdots$$ is defined by $$a_1=1$$, $$a_{2n}=a_n$$, $$a_{2n+1}=a_{2n}+1$$.

Find the largest value in $$a_1,\;a_2,\;a_3,\cdots,\; a_{1989}$$ and the number of times it occurs.
Denote $S_n=\{i:2^{n-1}\leq i<2^n\}$.
Let $f:\mathbb N\to \mathbb N$ be the function $f(k)=a_k$.
Now its not very hard to see that $[\max f(S_n)]+1=\max f(S_{n+1})$.
This easily leads to the answer.
The maximum achieved by the sequence given is $10$.
 
Last edited:
caffeinemachine said:
anemone said:
The sequence $$a_1,\;a_2,\;a_3,\cdots$$ is defined by $$a_1=1$$, $$a_{2n}=a_n$$, $$a_{2n+1}=a_{2n}+1$$.

Find the largest value in $$a_1,\;a_2,\;a_3,\cdots,\; a_{1989}$$ and the number of times it occurs.

Denote $S_n=\{i:2^{n-1}\leq i<2^n\}$.
Let $f:\mathbb N\to \mathbb N$ be the function $f(k)=a_k$.
Now its not very hard to see that $[\max f(S_n)]+1=\max f(S_{n+1})$.
This easily leads to the answer.
The maximum achieved by the sequence given is $10$.
That neatly answers the first part of the problem. But the question also asks for the number of times that this maximum value occurs. The value 10 occurs for the first time as $a_{1023}$. But to find out how many more times it occurs in $\{a_{1024},\ldots,a_{1989}\}$ it will be necessary to look more closely at the structure of the sequence $\{a_k\}$.

It looks to me as though $a_k$ ought to be the number of 1s in the binary representation of $k$. Maybe that will help to lead to an answer.
 
Opalg said:
That neatly answers the first part of the problem. But the question also asks for the number of times that this maximum value occurs. The value 10 occurs for the first time as $a_{1023}$. But to find out how many more times it occurs in $\{a_{1024},\ldots,a_{1989}\}$ it will be necessary to look more closely at the structure of the sequence $\{a_k\}$.

It looks to me as though $a_k$ ought to be the number of 1s in the binary representation of $k$. Maybe that will help to lead to an answer.
It can be shown by induction that $\max f(S_n)$ occurs at $i=2^{n}-1$ and that it occurs exactly once in $S_n$.
This might settle second part of the problem. I will get back to this in a few hours. Have a test to write.
 
It looks to me as though $a_k$ ought to be the number of 1s in the binary representation of $k$. Maybe that will help to lead to an answer.
In fact, it's obvious when you think about it. If $b_k$ is the number of 1s in the binary representation of $k$, then $b_{2k} = b_k$ (because the binary representation of $2k$ is the same as that of $k$ with an extra $0$ at the end), and $b_{2k+1} = b_{2k}+1$ (because the binary representation of $2k$ is the same as that of $2k$ with the final $0$ replaced by a $1$). Also, $b_1=1$. Therefore $b_k=a_k$.

So the first number with $a_k=10$ is $1023$ (whose binary representation consists of ten $1$s). In the range from $1024$ to $2047$, the numbers all have 11 binary digits, so the only ones with $a_k=10$ will be those with one binary digit $0$ and all the rest $1$s. Enumerating these, we get
$10111111111_2 = 1535_{10}$,
$11011111111_2 = 1791_{10}$,
$11101111111_2 = 1919_{10}$,
$11110111111_2 = 1983_{10}$,
$11111011111_2 = $ (greater than $1989$ in base 10, so we can stop there).​
So there are five numbers $\leqslant 1989$ for which $a_k=10$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top