Find the last two digits of the number ## 9^{9^{9}} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The last two digits of the number 999 are definitively 89. This conclusion is reached by evaluating 99 mod 100, which simplifies to 99 mod 10 being 9 and 910 mod 100 equating to 1. The calculations confirm that 99 mod 100 yields 89, thus establishing the final result.

PREREQUISITES
  • Understanding of modular arithmetic, specifically mod 100 and mod 10.
  • Familiarity with exponentiation and properties of powers.
  • Knowledge of congruences and their applications in number theory.
  • Ability to perform calculations involving large powers efficiently.
NEXT STEPS
  • Study the properties of modular exponentiation for large numbers.
  • Learn about Euler's theorem and its applications in finding modular inverses.
  • Explore Fermat's Little Theorem and its implications for prime moduli.
  • Investigate the Chinese Remainder Theorem for solving systems of congruences.
USEFUL FOR

This discussion is beneficial for mathematicians, students studying number theory, and anyone interested in advanced modular arithmetic techniques.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations
None.
Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations:: None.

Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
 
  • Like
Likes   Reactions: Delta2
fresh_42 said:
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
 
  • Like
Likes   Reactions: Delta2
Math100 said:
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
 
  • Like
Likes   Reactions: Delta2
fresh_42 said:
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
## (9^{10})^{k}\equiv 1^{k}\pmod {100} ##
 
Because ## 9^{10}\equiv 1\pmod {100} ##.
 
  • Like
Likes   Reactions: Delta2
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes   Reactions: Delta2
Math100 said:
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
 
fresh_42 said:
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {100} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
 
Last edited:
  • Like
Likes   Reactions: Delta2
  • #10
Math100 said:
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {10} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
Very well, that was the idea. Yes, ##9^9\equiv 89 \pmod {100}## needs probably a computation (##9^3=729## and ##29^3=24,389##) and ##9^9\equiv 1 \pmod {10}## is a consequence thereof. The latter can also be seen by:
\begin{align*}
9^1&\equiv 9 \pmod {10}\\
9^2&\equiv 1 \pmod {10}\\
9^3&\equiv 9 \pmod {10}\\
9^4&\equiv 1 \pmod {10}\\
9^5&\equiv 9 \pmod {10}\\
&\ldots
\end{align*}
The digits ##1## and ##9## alternate.
 
  • Like
Likes   Reactions: Delta2 and Math100

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
Replies
6
Views
2K
Replies
4
Views
3K