Find the last two digits of the number ## 9^{9^{9}} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the last two digits of the number 9^(9^9), concluding that they are 89. It establishes that 9^9 is congruent to 9 modulo 10, leading to the expression 9^(9+10k) modulo 100. The calculations show that 9^10 is congruent to 1 modulo 100, allowing simplification to 9^9 modulo 100. The final result confirms that the last two digits of 9^(9^9) are indeed 89. The reasoning involves modular arithmetic and properties of powers of 9.
Math100
Messages
813
Reaction score
229
Homework Statement
Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations
None.
Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations:: None.

Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
 
  • Like
Likes Delta2
fresh_42 said:
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
 
  • Like
Likes Delta2
Math100 said:
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
 
  • Like
Likes Delta2
fresh_42 said:
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
## (9^{10})^{k}\equiv 1^{k}\pmod {100} ##
 
Because ## 9^{10}\equiv 1\pmod {100} ##.
 
  • Like
Likes Delta2
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes Delta2
Math100 said:
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
 
fresh_42 said:
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {100} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
 
Last edited:
  • Like
Likes Delta2
  • #10
Math100 said:
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {10} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
Very well, that was the idea. Yes, ##9^9\equiv 89 \pmod {100}## needs probably a computation (##9^3=729## and ##29^3=24,389##) and ##9^9\equiv 1 \pmod {10}## is a consequence thereof. The latter can also be seen by:
\begin{align*}
9^1&\equiv 9 \pmod {10}\\
9^2&\equiv 1 \pmod {10}\\
9^3&\equiv 9 \pmod {10}\\
9^4&\equiv 1 \pmod {10}\\
9^5&\equiv 9 \pmod {10}\\
&\ldots
\end{align*}
The digits ##1## and ##9## alternate.
 
  • Like
Likes Delta2 and Math100
Back
Top