Find the last two digits of the number ## 9^{9^{9}} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The problem involves finding the last two digits of the number \( 9^{9^{9}} \). The discussion centers around modular arithmetic, specifically modulo \( 100 \) and \( 10 \), and the properties of powers of \( 9 \).

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the equivalence of \( 9^{9} \) modulo \( 10 \) and \( 100 \). Questions arise regarding the transition from \( 9^{10k} \) to \( (-1)^{10k} \) and the validity of these steps in the context of modulo \( 100 \). There is also discussion on how to derive \( 9^{10} \equiv 1 \pmod{100} \) and the implications of these calculations.

Discussion Status

Participants are actively questioning and clarifying the reasoning behind various steps in the calculations. Some guidance has been offered regarding the properties of powers of \( 9 \), but there is no explicit consensus on the interpretations of the modular reductions being discussed.

Contextual Notes

There are references to hints provided in the original problem statement, and participants express uncertainty about the calculations and assumptions made regarding modular equivalences.

Math100
Messages
823
Reaction score
234
Homework Statement
Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations
None.
Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the last two digits of the number ## 9^{9^{9}} ##.
[Hint: ## 9^{9}\equiv 9\pmod {10} ##; hence, ## 9^{9^{9}}=9^{9+10k} ##; notice that ## 9^{9}\equiv 89\pmod {100} ##.]
Relevant Equations:: None.

Note that ## 9^{9}\equiv 9\pmod {10} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv 9^{9+10k}\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv (9^{9}\cdot (-1)^{10k})\pmod {100}\\
&\equiv 9^{9}\cdot [(-1)^{10}]^{k}\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
 
  • Like
Likes   Reactions: Delta2
fresh_42 said:
I do not understand the third step, where you go from ##9^{10k}## to ##(-1)^{10k}.## Why should this be true modulo ##100##? It is true modulo ##10##, not ##100.##
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
 
  • Like
Likes   Reactions: Delta2
Math100 said:
I think I am wrong, then. Because I thought it is true modulo ## 100 ##.
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
 
  • Like
Likes   Reactions: Delta2
fresh_42 said:
Try ##(9^{10})^k=(9^9\cdot 9)^k## modulo ##100##.
## (9^{10})^{k}\equiv 1^{k}\pmod {100} ##
 
Because ## 9^{10}\equiv 1\pmod {100} ##.
 
  • Like
Likes   Reactions: Delta2
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
 
  • Like
Likes   Reactions: Delta2
Math100 said:
Observe that ## 9^{9}\equiv 9\pmod {10} ## and ## 9^{10}\equiv 1\pmod {100} ##.
Thus
\begin{align*}
&9^{9^{9}}\equiv (9^{9+10k})\pmod {100}\\
&\equiv (9^{9}\cdot 9^{10k})\pmod {100}\\
&\equiv [9^{9}\cdot (1)^{k}]\pmod {100}\\
&\equiv (9^{9}\cdot 1)\pmod {100}\\
&\equiv 9^{9}\pmod {100}\\
&\equiv 89\pmod {100}.\\
\end{align*}
Therefore, the last two digits of the number ## 9^{9^{9}} ## are ## 89 ##.
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
 
fresh_42 said:
Yes, but how did you find ##9^{10}\equiv 1 \pmod {10}##?

Can you explain that and why ##9^9\equiv 9 \pmod {10}## without calculating the products?
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {100} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
 
Last edited:
  • Like
Likes   Reactions: Delta2
  • #10
Math100 said:
For ## 9^{9}\equiv 9\pmod {10} ##, I got this from the hint in this question/problem. As for ## 9^{10}\equiv 1\pmod {10} ##, I found that by,

## 9^{10}\equiv (9^{9}\cdot 9)\pmod {100}\equiv (89\cdot 9)\pmod {100}\equiv 801\pmod {100}\equiv 1\pmod {100} ##.
Thus ## 9^{10}\equiv 1\pmod {100} ##.
Very well, that was the idea. Yes, ##9^9\equiv 89 \pmod {100}## needs probably a computation (##9^3=729## and ##29^3=24,389##) and ##9^9\equiv 1 \pmod {10}## is a consequence thereof. The latter can also be seen by:
\begin{align*}
9^1&\equiv 9 \pmod {10}\\
9^2&\equiv 1 \pmod {10}\\
9^3&\equiv 9 \pmod {10}\\
9^4&\equiv 1 \pmod {10}\\
9^5&\equiv 9 \pmod {10}\\
&\ldots
\end{align*}
The digits ##1## and ##9## alternate.
 
  • Like
Likes   Reactions: Delta2 and Math100

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
Replies
6
Views
2K
Replies
4
Views
3K