MHB Find the Length of Shortest Ladder to Reach Over 8 ft. Fence

  • Thread starter Thread starter MarkFL
  • Start date Start date
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A fence 8 ft. high (h) runs parallel to a building and is 15 feet (d) from it. Find the length (L) of the shortest ladder that will reach..?

A fence 8 ft. high (h) runs parallel to a building and is 15 feet (d) from it. Find the length (L) of the shortest ladder that will reach from the ground across the top of the fence and to the wall of the building.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Hi,

If we ignore all dimensions of the ladder except the length, this is equivalent to minimizing the sum of the squares of the intercepts of a line passing through the point $(d,h)$ in the first quadrant of the $xy$-plane. Let $a$ and $b$ be the $x$-intercept and $y$-intercept respectively if this line. Thus, the function we wish to minimize is (the objective function):

$f(a,b)=a^2+b^2$

Now, using the two-intercept form for a line, we find we must have (the constraint):

$\displaystyle \frac{d}{a}+\frac{h}{b}=1$

Using Lagrange multipliers, we find:

$\displaystyle 2a=\lambda\left(-\frac{d}{a^2} \right)$

$\displaystyle 2b=\lambda\left(-\frac{h}{b^2} \right)$

and this implies:

$\displaystyle b=a\left(\frac{h}{d} \right)^{\frac{1}{3}}$

Substituting for $b$ into the constraint, there results:

$\displaystyle \frac{d}{a}+\frac{h}{a\left(\frac{h}{d} \right)^{\frac{1}{3}}}=1$

$\displaystyle a=d^{\frac{1}{3}}\left(d^{\frac{2}{3}}+h^{\frac{2}{3}} \right)$

Hence, we have:

$\displaystyle b=h^{\frac{1}{3}}\left(d^{\frac{2}{3}}+h^{\frac{2}{3}} \right)$

and so we find:

$\displaystyle f_{\min}=f\left(d^{\frac{1}{3}}\left(d^{\frac{2}{3}}+h^{\frac{2}{3}} \right),h^{\frac{1}{3}}\left(d^{\frac{2}{3}}+h^{ \frac{2}{3}} \right) \right)=\left(d^{\frac{2}{3}}+h^{\frac{2}{3}} \right)^3$

Now, we need to take the square root of this since the objective function is the square of the distance we actually wish to minimize. Let $L$ be the length of the ladder, and we now have:

$\displaystyle L_{\min}=\left(d^{\frac{2}{3}}+h^{\frac{2}{3}} \right)^{\frac{3}{2}}$

Letting $d=15\text{ ft}$ and $h=8\text{ ft}$ we have:

$\displaystyle L_{\min}=\left(15^{\frac{2}{3}}+8^{\frac{2}{3}} \right)^{\frac{3}{2}}\text{ ft}\approx32.0134951101408\text{ ft}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top