ok. I tried this :
1)
##\lim_{h \to 0} \frac{\cos(x - 2h) - \cos(x + h)}{\sin(x + 3h) - \sin (x - h)}##
##cos(a \pm b) = \cos a cos b \mp sin a sin b ##
##\lim_{h \to 0} \frac{\cos(x)\cos(2h) + \sin(x)\sin(2h) - \cos(x)\cos(h) + \sin(x)\sin(h)} {\sin(x + 3h) - \sin (x - h)}##
##\lim_{h \to 0} \frac{\cos(x)(\cos(2h) - \cos(h) ) + \sin(x)( \sin(2h) + \sin(h) )} {\sin(x + 3h) - \sin (x - h)}##
2)
##\lim_{h \to 0} \frac{\cos(x - 2h)- \cos(x + h)}{\sin(x + 3h) - \sin (x - h)} * \frac{\cos(x - 2h) + \cos(x + h)}{\cos(x - 2h) + \cos(x + h)} * \frac {\sin(x + 3h) + \sin (x - h)}{\sin(x + 3h) + \sin (x - h)}##
##\lim_{h \to 0} \frac{ (\cos(x - 2h)^2 - \cos(x + h)^2 ) (\sin(x + 3h) + \sin (x - h) )}{(\sin(x + 3h)^2 - \sin (x - h)^2) (\cos(x - 2h) + \cos(x + h) ) }##
3) ##\lim_{h \to 0} \frac{\cos(x - 2h) - \cos(x + h)}{\sin(x + 3h) - \sin (x - h)}##
L Hospital rule
##\lim_{h \to 0} \frac{-\sin(x - 2h) + \sin(x + h)}{\cos(x + 3h) - \cos (x - h)}##
should I derive it with respect to x or h?