MHB Is graphing the best method for finding the limit of a rational function?

  • Thread starter Thread starter nycmathdad
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The limit of the rational function x/(x^2 - 4) as x approaches 2 from the right is positive infinity, while approaching from the left results in negative infinity. The function has a vertical asymptote at x = 2. Graphing and creating a number line to analyze intervals can effectively illustrate the behavior of the function around the asymptote. Utilizing specific values such as 2.1, 2.01, and 2.001 helps confirm these limits.

PREREQUISITES
  • Understanding of rational functions
  • Knowledge of limits in calculus
  • Familiarity with vertical asymptotes
  • Ability to analyze function behavior using number lines
NEXT STEPS
  • Study the concept of vertical asymptotes in rational functions
  • Learn how to use the epsilon-delta definition of limits
  • Practice graphing rational functions to identify limits visually
  • Explore the behavior of functions at infinity and limits at infinity
USEFUL FOR

Students studying calculus, particularly those focusing on limits and rational functions, as well as educators seeking effective teaching methods for these concepts.

nycmathdad
Messages
74
Reaction score
0
Find the limit of x/(x^2 - 4) as x tends to 2 from the right.

If I plug x = 0, I will get 0/-4 = asymptote. Again, is graphing the best to do this one?

I can also create a number line.

<----------(-2)----------(0)---------------(2)-------->

I can then select values for x from each interval. I then plug those values into the given function to see if the intervals are positive or negative.

True?
 
Physics news on Phys.org
Beer soaked fill in the boxes hint follows.
nycmathdad said:
Find the limit of x/(x^2 - 4) as x tends to 2 from the right.

If I plug x = 0, I will get 0/-4 = asymptote. Again, is graphing the best to do this one?

I can also create a number line.

<----------(-2)----------(0)---------------(2)-------->

I can then select values for x from each interval. I then plug those values into the given function to see if the intervals are positive or negative.

True?
As x approaches 2 from the $\boxed{?}$, x approaches $\boxed{?}$ and
$x^2−4$ approaches $\boxed{?}$ from the $\boxed{?}$. Therefore,
the ratio $\frac{x}{x^2−4}$ becomes $\boxed{?}$ in the $\boxed{?}$ $\boxed{?}$, so $$\mathop {\lim }\limits_{x\to2^+} \frac{x}{{x^2-4}} = \boxed{?}$$

Note: Number of question marks corresponds to number of letters or symbols.

Again, to support whatever conclusion you get from filling in the boxes, make a table with the following values of x: 2.1, 2.01, 2.001

Do try to take the time to read your book instead of insisting on your ineffective method:
2. I don't have time to read the textbook lessons. I usually make use of the chapter outline as my guide. For example, Section 1.5 is all about Limits at Infinity. I then search You Tube for Limits at Infinity video lessons. I take notes on everything said in the video lesson. I work out all sample questions with the video instructor. Is this a good way to learn the material?
 
Last edited:
For x> 2 $x^2- 4$ is positive. As x approaches 2 from the right, $\frac{x}{x^2- 4}$ goes to $+\infty$.
For x< 2 $x^2- 4$ is negative. As x approaches 2 from the -eft, $\frac{x}{x^2- 4}$ goes to $+\infty$.

x= 2 is a vertical asymptote.
 
Country Boy said:
For x> 2 $x^2- 4$ is positive. As x approaches 2 from the right, $\frac{x}{x^2- 4}$ goes to $+\infty$.
For x< 2 $x^2- 4$ is negative. As x approaches 2 from the -eft, $\frac{x}{x^2- 4}$ goes to $+\infty$.

x= 2 is a vertical asymptote.

So the answer is positive infinity.
 
No. I miswrote (I'm doing that too often lately!) . I apologize for that.

I meant to say "For x< 2 $x^2- 4$ is negative, As a approaches 2 from the left, $\frac{x}{x^2- 4}$ goes to $- \infty$". NEGATIVE infinity, not positive infinity. $\frac{x}{x^2- 4}$ does NOT have a limit as x goes to 2.
 
Country Boy said:
No. I miswrote (I'm doing that too often lately!) . I apologize for that.

I meant to say "For x< 2 $x^2- 4$ is negative, As a approaches 2 from the left, $\frac{x}{x^2- 4}$ goes to $- \infty$". NEGATIVE infinity, not positive infinity. $\frac{x}{x^2- 4}$ does NOT have a limit as x goes to 2.

Ok. I will practice more problems before moving on in the textbook.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
5
Views
1K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K