Find the maximal value of a^4b+b^4c+c^4a

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Value
Click For Summary

Discussion Overview

The discussion revolves around finding the maximal value of the expression \(a^4b + b^4c + c^4a\) under the constraint that \(a, b, c\) are non-negative real numbers summing to 5. The focus includes mathematical reasoning and exploration of potential solutions.

Discussion Character

  • Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant proposes to find the maximal value of \(a^4b + b^4c + c^4a\) given the constraint \(a + b + c = 5\).
  • Several suggested solutions are presented, although details of these solutions are not provided.
  • One participant challenges the validity of a previous claim by stating that \(f(4,0,1) = f(1,4,0) = f(0,1,4) = 4\), indicating that while there is cyclic symmetry, there is not complete symmetry among the variables.
  • A later reply acknowledges a mistake regarding the symmetry of the output, suggesting a misunderstanding of the function's properties.

Areas of Agreement / Disagreement

Participants appear to disagree on the nature of symmetry in the function and the implications for the maximal value. The discussion remains unresolved regarding the optimal approach to finding the maximal value.

Contextual Notes

There are limitations in the discussion regarding the assumptions made about symmetry and the specific values tested, which may affect the conclusions drawn about the maximal value.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a, b, c$ be non-negative real numbers satisfying $a + b + c = 5$.

Find the maximal value of $a^4b+b^4c+c^4a$.
 
Mathematics news on Phys.org
Suggested solution:
The maximal value is $256$ and is attained at $(4,1,0), (0,4,1)$ or $(1,0,4)$.

Define $f(x,y,z) = x^4y+y^4z+z^4x$. Let $a \geq b$ and $a\geq c$.

Let us prove, that $f(a+c/2,b+c/2,0) \geq f(a,b,c)$. Indeed,

\[f(a+c/2,b+c/2,0) = (a+c/2)^4(b+c/2) \geq (a^4+2a^3c)(b+c/2) \geq a^4b+2a^3bc+a^3c^2 \geq a^4b+b^4c+c^4a = f(a,b,c)\]

Now, we maximize $f(a,b,0)$, when $a+b = 5$ by using the AM-GM inequality:

$5 = a+b = (a/4+a/4+a/4+a/4 + b) \geq 5\sqrt[5]{a^4b4^{-4}}$.

Therefore, $a^4b \geq 4^4$. Equality holds at $a = 4, b=1$. Similarly we obtain other maximum triples $(0,4,1)$ and $(1,0,4)$ when maximum of $a,b$ and $c$ is $b$ and $c$. Done.
 
lfdahl said:
Suggested solution:
The maximal value is $256$ and is attained at $(4,1,0), (0,4,1)$ or $(1,0,4)$.

Define $f(x,y,z) = x^4y+y^4z+z^4x$. Let $a \geq b$ and $a\geq c$.

Let us prove, that $f(a+c/2,b+c/2,0) \geq f(a,b,c)$. Indeed,

\[f(a+c/2,b+c/2,0) = (a+c/2)^4(b+c/2) \geq (a^4+2a^3c)(b+c/2) \geq a^4b+2a^3bc+a^3c^2 \geq a^4b+b^4c+c^4a = f(a,b,c)\]

Now, we maximize $f(a,b,0)$, when $a+b = 5$ by using the AM-GM inequality:

$5 = a+b = (a/4+a/4+a/4+a/4 + b) \geq 5\sqrt[5]{a^4b4^{-4}}$.

Therefore, $a^4b \geq 4^4$. Equality holds at $a = 4, b=1$. Similarly we obtain other maximum triples $(0,4,1)$ and $(1,0,4)$ when maximum of $a,b$ and $c$ is $b$ and $c$. Done.

Three triples are missing solution set is $(4,1,0),(4,0,1),(0,1,4), (0,4,1),(1,4,0),(1,0,4)$
 
kaliprasad said:
Three triples are missing solution set is $(4,1,0),(4,0,1),(0,1,4), (0,4,1),(1,4,0),(1,0,4)$
[sp]Not true: $f(4,0,1) = f(1,4,0) = f(0,1,4) = 4$. There is cyclic symmetry but not complete symmetry in the variables.

[/sp]
 
Opalg said:
[sp]Not true: $f(4,0,1) = f(1,4,0) = f(0,1,4) = 4$. There is cyclic symmetry but not complete symmetry in the variables.

[/sp]

Oops my mistake. I did not realize the output is non symmetric
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K