MHB Find the minimal polynomial of some value a over Q

E01
Messages
8
Reaction score
0
I'm trying find the minimal polynomial of $$a=3^{1/3}+9^{1/3}$$ over the rational numbers. I am currently going about this by trying to construct a polynomial from a (using what I intuitively feel would be a sufficiently small number of operations).
Then I'd show it's irreducible by decomposing it into linear functions with complex functions and show the combination of any of these linear components is not a polynomial with rational coefficients (this part I'm worried about as if the degree is greater than 6 I'm not sure how to find the roots of the equation). Can anyone give me a hint(like what the degree of the minimal polynomial is)?

Okay, I just found a polynomial of degree 27.
 
Last edited:
Physics news on Phys.org
E01 said:
I'm trying find the minimal polynomial of $$a=3^{1/3}+9^{1/3}$$ over the rational numbers. I am currently going about this by trying to construct a polynomial from a (using what I intuitively feel would be a sufficiently small number of operations).
Then I'd show it's irreducible by decomposing it into linear functions with complex functions and show the combination of any of these linear components is not a polynomial with rational coefficients (this part I'm worried about as if the degree is greater than 6 I'm not sure how to find the roots of the equation). Can anyone give me a hint(like what the degree of the minimal polynomial is)?

Okay, I just found a polynomial of degree 27.
$a^3 = \bigl(3^{1/3} + 3^{2/3}\bigr)^3 = 3 + 3\cdot3^{1/3}\cdot3^{2/3}\bigl(3^{1/3} + 3^{2/3}\bigr) + 9$ (binomial expansion). That should simplify to a cubic equation for $a$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top