MHB Find the minimum a^4+b^4+c^4−3abc

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary
The discussion focuses on finding the minimum value of the expression a^4 + b^4 + c^4 - 3abc under the constraints that a is greater than or equal to 1 and the sum of a, b, and c equals zero. Participants share hints and solutions, emphasizing the importance of the given conditions in simplifying the problem. One user expresses gratitude for a well-explained solution, highlighting the collaborative nature of the discussion. The mathematical exploration aims to derive a minimum value through analytical methods. Overall, the thread showcases a problem-solving approach to a specific algebraic expression within defined parameters.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}.$

2. $b^4+c^4 \ge \frac{a^4}{8}.$
 
Mathematics news on Phys.org
lfdahl said:
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc=A$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}---(1)$

2. $b^4+c^4 \ge \frac{a^4}{8}---(2)$
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)
 
Last edited:
Albert said:
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)

Thankyou, Albert! - for your nice solution. Well done!
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K