Find the minimum a^4+b^4+c^4−3abc

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary
SUMMARY

The minimum of the expression \(a^4 + b^4 + c^4 - 3abc\) is determined under the constraints \(a \ge 1\) and \(a + b + c = 0\). The discussion emphasizes the importance of substituting values for \(b\) and \(c\) in terms of \(a\) to simplify the expression. The solution provided by Albert effectively demonstrates the method to achieve the minimum value, confirming the approach's validity through mathematical reasoning.

PREREQUISITES
  • Understanding of polynomial expressions and their properties
  • Knowledge of real number constraints and inequalities
  • Familiarity with substitution methods in algebra
  • Basic calculus concepts for optimization
NEXT STEPS
  • Explore optimization techniques in algebraic expressions
  • Study the properties of symmetric polynomials
  • Learn about Lagrange multipliers for constrained optimization
  • Investigate real analysis principles related to minima and maxima
USEFUL FOR

Mathematicians, students studying algebra and optimization, and anyone interested in advanced problem-solving techniques in real analysis.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}.$

2. $b^4+c^4 \ge \frac{a^4}{8}.$
 
Mathematics news on Phys.org
lfdahl said:
Find the minimum of the expression:

$$a^4+b^4+c^4-3abc=A$$

- if $a,b$ and $c$ are real numbers satisfying the conditions: $a \ge 1$ and $a+b+c = 0$.

Hint:
First prove the two auxiliary inequalities:

1. $bc \le \frac{a^2}{4}---(1)$

2. $b^4+c^4 \ge \frac{a^4}{8}---(2)$
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)
 
Last edited:
Albert said:
my solution(using hint):
proof of (1):
$2bc=(b+c)^2-(b^2+c^2)\leq a^2-2bc$
so $4bc\leq a^2$
proof of (2):
$b^4+c^4=(b^2+c^2)^2-2b^2c^2=((b+c)^2-2bc)^2-2b^2c^2$
$=(a^2-2bc)^2-2b^2c^2\geq\dfrac {2a^4-a^4}{8}=\dfrac{a^4}{8}$
$A\geq a^4+\dfrac {a^4}{8}-3abc\geq \dfrac {9a^4}{8}-\dfrac {3a^3}{4}$
$\geq \dfrac{3a^4}{8}\geq\dfrac{3}{8}$
with ($a=1,b=c=\dfrac{-1}{2}$)

Thankyou, Albert! - for your nice solution. Well done!
 

Similar threads

Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K