Albert1
- 1,221
- 0
$a>1,b>1$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
Albert said:$a>1,b>1$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
very good I like Serena !I like Serena said:Both partial derivatives have to be zero.
From those equations it follows that:
\begin{cases}2a(a-1)^2&=b^2(b-1) \\ a^2(a-1)&=2b(b-1)^2\end{cases}
Multiplying those equations gives us:
$$2a^3(a-1)^3=2b^3(b-1)^3 \Rightarrow a(a-1) = b(b-1)$$
Substitute back into the equations to find:
$$\begin{cases}2a(a-1)^2&=ab(a-1) \\ ab(b-1)&=2b(b-1)^2\end{cases}
\Rightarrow \begin{cases}2(a-1)&= b\\ a&=2(b-1)\end{cases}
\Rightarrow a = b = 2$$
The corresponding minimum value is $8$.