Find the Minimum Value of a Complex Equation

Click For Summary
SUMMARY

The discussion focuses on finding the minimum value of the equation $\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$ under the constraints $a > 1$ and $b > 1$. Participants explore various methods to derive the minimum, emphasizing the importance of calculus and optimization techniques. The conversation highlights the effectiveness of using derivatives to identify critical points and confirm minimum values within the specified domain.

PREREQUISITES
  • Understanding of calculus, specifically differentiation and critical points.
  • Familiarity with optimization techniques in mathematical analysis.
  • Knowledge of inequalities and their applications in finding minimum values.
  • Basic algebraic manipulation skills for handling complex equations.
NEXT STEPS
  • Study the application of Lagrange multipliers for constrained optimization.
  • Learn about the method of substitution to simplify complex equations.
  • Research the use of the second derivative test to confirm minimum values.
  • Explore graphical methods for visualizing optimization problems.
USEFUL FOR

Mathematicians, engineering students, and anyone interested in optimization problems and advanced calculus techniques.

Albert1
Messages
1,221
Reaction score
0
$a>1,b>1$

find the minimum value of

$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
 
Physics news on Phys.org
Albert said:
$a>1,b>1$

find the minimum value of

$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$

Both partial derivatives have to be zero.

From those equations it follows that:
\begin{cases}2a(a-1)^2&=b^2(b-1) \\ a^2(a-1)&=2b(b-1)^2\end{cases}
Multiplying those equations gives us:
$$2a^3(a-1)^3=2b^3(b-1)^3 \Rightarrow a(a-1) = b(b-1)$$
Substitute back into the equations to find:
$$\begin{cases}2a(a-1)^2&=ab(a-1) \\ ab(b-1)&=2b(b-1)^2\end{cases}
\Rightarrow \begin{cases}2(a-1)&= b\\ a&=2(b-1)\end{cases}
\Rightarrow a = b = 2$$
The corresponding minimum value is $8$.
 
I like Serena said:
Both partial derivatives have to be zero.

From those equations it follows that:
\begin{cases}2a(a-1)^2&=b^2(b-1) \\ a^2(a-1)&=2b(b-1)^2\end{cases}
Multiplying those equations gives us:
$$2a^3(a-1)^3=2b^3(b-1)^3 \Rightarrow a(a-1) = b(b-1)$$
Substitute back into the equations to find:
$$\begin{cases}2a(a-1)^2&=ab(a-1) \\ ab(b-1)&=2b(b-1)^2\end{cases}
\Rightarrow \begin{cases}2(a-1)&= b\\ a&=2(b-1)\end{cases}
\Rightarrow a = b = 2$$
The corresponding minimum value is $8$.
very good I like Serena !
another solution:
using $AP\geq GP$
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}\geq 2\sqrt {\dfrac {a^2}{a-1}}\times \sqrt{\dfrac {b^2}{b-1}}--(1)$
minimum occurs when $a=b$
let:$\sqrt {\dfrac {a^2}{a-1}}=\sqrt{\dfrac {b^2}{b-1}}=k>0$
we have :$a^2=k^2(a-1)=b^2=k^2(b-1)$
$\rightarrow a^2 - k^2a+k^2=b^2-k^2b+k^2=0--(2)$
for $a,b\in R$
we must have:$k^4-4k^2\geq 0$
or $k^2(k^2-4)\geq 0,\rightarrow k\geq 2$
this implies : $ (1)\geq 2\times 2\times 2=8$
$\therefore $ the minimum of $(1)=8$
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K