Albert1
- 1,221
- 0
$a>1,b>1$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
The discussion focuses on finding the minimum value of the equation $\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$ under the constraints $a > 1$ and $b > 1$. Participants explore various methods to derive the minimum, emphasizing the importance of calculus and optimization techniques. The conversation highlights the effectiveness of using derivatives to identify critical points and confirm minimum values within the specified domain.
PREREQUISITESMathematicians, engineering students, and anyone interested in optimization problems and advanced calculus techniques.
Albert said:$a>1,b>1$
find the minimum value of
$\dfrac {a^2}{b-1}+\dfrac {b^2}{a-1}$
very good I like Serena !I like Serena said:Both partial derivatives have to be zero.
From those equations it follows that:
\begin{cases}2a(a-1)^2&=b^2(b-1) \\ a^2(a-1)&=2b(b-1)^2\end{cases}
Multiplying those equations gives us:
$$2a^3(a-1)^3=2b^3(b-1)^3 \Rightarrow a(a-1) = b(b-1)$$
Substitute back into the equations to find:
$$\begin{cases}2a(a-1)^2&=ab(a-1) \\ ab(b-1)&=2b(b-1)^2\end{cases}
\Rightarrow \begin{cases}2(a-1)&= b\\ a&=2(b-1)\end{cases}
\Rightarrow a = b = 2$$
The corresponding minimum value is $8$.