MHB Find the smallest A satisfying the inequality

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
The discussion revolves around finding the smallest real number A that satisfies the inequality involving the Fibonacci sequence defined by a_1 = 1, a_2 = 1, and a_n = a_{n-1} + a_{n-2} for n > 2. The specific inequality to be satisfied is \[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\] for any natural number k. Participants are tasked with determining the value of A that holds true for all k. The conversation highlights the mathematical approach to solving this inequality using properties of the Fibonacci sequence. Ultimately, the goal is to identify the smallest A that meets the criteria outlined in the inequality.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-1}+a_{n-2}$ for each $n > 2$. Find the smallest real number, $A$, satisfying

\[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\]

for any natural number $k$.
 
Mathematics news on Phys.org
lfdahl said:
Let $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-1}+a_{n-2}$ for each $n > 2$. Find the smallest real number, $A$, satisfying

\[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\]

for any natural number $k$.

we have
$\frac{1}{a_{i}a_{i+2}}= \frac{1}{a_{i+1}}\frac{a_{i+1}}{a_{i}a_{i+2}}$
$= \frac{1}{a_{i+1}}\frac{a_{i+2}- a_i}{a_{i}a_{i+2}}$ (from given condition)
$= \frac{1}{a_{i+1}}(\frac{1}{a_i} - \frac{1} {a_{i+2}})$
above term is positive and telescopic sum so maximum sum is sum at infinite and adding we get
$\frac{1}{a_1a_2} + \frac{1}{a_2a_3}$ and se get putting the values $\frac{3}{2}$
 
kaliprasad said:
we have
$\frac{1}{a_{i}a_{i+2}}= \frac{1}{a_{i+1}}\frac{a_{i+1}}{a_{i}a_{i+2}}$
$= \frac{1}{a_{i+1}}\frac{a_{i+2}- a_i}{a_{i}a_{i+2}}$ (from given condition)
$= \frac{1}{a_{i+1}}(\frac{1}{a_i} - \frac{1} {a_{i+2}})$
above term is positive and telescopic sum so maximum sum is sum at infinite and adding we get
$\frac{1}{a_1a_2} + \frac{1}{a_2a_3}$ and se get putting the values $\frac{3}{2}$

Hi, kaliprasad

With your telescoping sum, I get:
\[\sum_{i=1}^{k}\frac{1}{a_{i}a_{i+2}} = \sum_{i=1}^{k}\left ( \frac{1}{a_{i}a_{i+1}}-\frac{1}{a_{i+1}a_{i+2}} \right )\\ =\frac{1}{a_{1}a_{2}}-\frac{1}{a_2a_3}+\frac{1}{a_2a_3}-...+ \frac{1}{a_{k-1}a_k}-\frac{1}{a_ka_{k+1}}+\frac{1}{a_ka_{k+1}}-\frac{1}{a_{k+1}a_{k+2}} \\ = \frac{1}{a_{1}a_{2}}-\frac{1}{a_{k+1}a_{k+2}} = 1-\frac{1}{a_{k+1}a_{k+2}}.\]

So the smallest possible $A$, that satisfies the inequality is:
\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{a_{k+1}a_{k+2}} \right ) = 1.\]
 
lfdahl said:
Hi, kaliprasad

With your telescoping sum, I get:
\[\sum_{i=1}^{k}\frac{1}{a_{i}a_{i+2}} = \sum_{i=1}^{k}\left ( \frac{1}{a_{i}a_{i+1}}-\frac{1}{a_{i+1}a_{i+2}} \right )\\ =\frac{1}{a_{1}a_{2}}-\frac{1}{a_2a_3}+\frac{1}{a_2a_3}-...+ \frac{1}{a_{k-1}a_k}-\frac{1}{a_ka_{k+1}}+\frac{1}{a_ka_{k+1}}-\frac{1}{a_{k+1}a_{k+2}} \\ = \frac{1}{a_{1}a_{2}}-\frac{1}{a_{k+1}a_{k+2}} = 1-\frac{1}{a_{k+1}a_{k+2}}.\]

So the smallest possible $A$, that satisfies the inequality is:
\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{a_{k+1}a_{k+2}} \right ) = 1.\]

it is my mistake.
Your telescopic sum and hence limit is right.
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
673
Replies
7
Views
2K