Find the smallest A satisfying the inequality

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion revolves around finding the smallest real number \( A \) that satisfies the inequality involving the Fibonacci sequence defined by \( a_1 = 1 \), \( a_2 = 1 \), and \( a_n = a_{n-1} + a_{n-2} \) for \( n > 2 \). The specific inequality under consideration is \[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\] for any natural number \( k \). The scope includes mathematical reasoning related to sequences and inequalities.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 and Post 2 present the same problem statement regarding the inequality and the Fibonacci sequence.
  • Post 3 and Post 4 include greetings and an acknowledgment of a mistake, but do not contribute to the mathematical discussion.

Areas of Agreement / Disagreement

There is no substantive disagreement or agreement on the mathematical problem itself, as the discussion primarily consists of repeated problem statements and informal exchanges.

Contextual Notes

The posts do not provide any assumptions or additional context regarding the inequality or the Fibonacci sequence, and there are no mathematical steps or reasoning presented to explore the problem further.

Who May Find This Useful

Individuals interested in mathematical inequalities, sequences, and the properties of the Fibonacci numbers may find this discussion relevant.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-1}+a_{n-2}$ for each $n > 2$. Find the smallest real number, $A$, satisfying

\[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\]

for any natural number $k$.
 
Mathematics news on Phys.org
lfdahl said:
Let $a_1 = 1$, $a_2 = 1$ and $a_n = a_{n-1}+a_{n-2}$ for each $n > 2$. Find the smallest real number, $A$, satisfying

\[\sum_{i = 1}^{k}\frac{1}{a_{i}a_{i+2}} \leq A\]

for any natural number $k$.

we have
$\frac{1}{a_{i}a_{i+2}}= \frac{1}{a_{i+1}}\frac{a_{i+1}}{a_{i}a_{i+2}}$
$= \frac{1}{a_{i+1}}\frac{a_{i+2}- a_i}{a_{i}a_{i+2}}$ (from given condition)
$= \frac{1}{a_{i+1}}(\frac{1}{a_i} - \frac{1} {a_{i+2}})$
above term is positive and telescopic sum so maximum sum is sum at infinite and adding we get
$\frac{1}{a_1a_2} + \frac{1}{a_2a_3}$ and se get putting the values $\frac{3}{2}$
 
kaliprasad said:
we have
$\frac{1}{a_{i}a_{i+2}}= \frac{1}{a_{i+1}}\frac{a_{i+1}}{a_{i}a_{i+2}}$
$= \frac{1}{a_{i+1}}\frac{a_{i+2}- a_i}{a_{i}a_{i+2}}$ (from given condition)
$= \frac{1}{a_{i+1}}(\frac{1}{a_i} - \frac{1} {a_{i+2}})$
above term is positive and telescopic sum so maximum sum is sum at infinite and adding we get
$\frac{1}{a_1a_2} + \frac{1}{a_2a_3}$ and se get putting the values $\frac{3}{2}$

Hi, kaliprasad

With your telescoping sum, I get:
\[\sum_{i=1}^{k}\frac{1}{a_{i}a_{i+2}} = \sum_{i=1}^{k}\left ( \frac{1}{a_{i}a_{i+1}}-\frac{1}{a_{i+1}a_{i+2}} \right )\\ =\frac{1}{a_{1}a_{2}}-\frac{1}{a_2a_3}+\frac{1}{a_2a_3}-...+ \frac{1}{a_{k-1}a_k}-\frac{1}{a_ka_{k+1}}+\frac{1}{a_ka_{k+1}}-\frac{1}{a_{k+1}a_{k+2}} \\ = \frac{1}{a_{1}a_{2}}-\frac{1}{a_{k+1}a_{k+2}} = 1-\frac{1}{a_{k+1}a_{k+2}}.\]

So the smallest possible $A$, that satisfies the inequality is:
\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{a_{k+1}a_{k+2}} \right ) = 1.\]
 
lfdahl said:
Hi, kaliprasad

With your telescoping sum, I get:
\[\sum_{i=1}^{k}\frac{1}{a_{i}a_{i+2}} = \sum_{i=1}^{k}\left ( \frac{1}{a_{i}a_{i+1}}-\frac{1}{a_{i+1}a_{i+2}} \right )\\ =\frac{1}{a_{1}a_{2}}-\frac{1}{a_2a_3}+\frac{1}{a_2a_3}-...+ \frac{1}{a_{k-1}a_k}-\frac{1}{a_ka_{k+1}}+\frac{1}{a_ka_{k+1}}-\frac{1}{a_{k+1}a_{k+2}} \\ = \frac{1}{a_{1}a_{2}}-\frac{1}{a_{k+1}a_{k+2}} = 1-\frac{1}{a_{k+1}a_{k+2}}.\]

So the smallest possible $A$, that satisfies the inequality is:
\[\lim_{k\rightarrow \infty }\left ( 1-\frac{1}{a_{k+1}a_{k+2}} \right ) = 1.\]

it is my mistake.
Your telescopic sum and hence limit is right.
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
954
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K