MHB Find the smallest positive integer N

  • Thread starter Thread starter sfvdsc
  • Start date Start date
  • Tags Tags
    Integer Positive
AI Thread Summary
The smallest positive integer N that meets the criteria of being a square, a cube, an odd number, and divisible by twelve prime numbers must be structured to include the product of the first twelve primes. Since N must be odd, it cannot include the prime number 2, which complicates its formation. The proposed form for N is based on the product of the first twelve primes multiplied by an odd component raised to the sixth power. The calculations suggest that when K is zero, N equals approximately 7.42 trillion, resulting in a total of 13 digits. The discussion emphasizes the complexity of finding such a number while adhering to the specified conditions.
sfvdsc
Messages
5
Reaction score
0
Find the smallest positive integer N that satisfies all of the following conditions:
• N is a square.
• N is a cube.
• N is an odd number.
• N is divisible by twelve prime numbers.
How many digits does this number N have?Please Explain your steps in detail.
 
Physics news on Phys.org
Beer induced query follows.
sfvdsc said:
Find the smallest positive integer N that satisfies all of the following conditions:
• N is a square.
• N is a cube.
• N is an odd number.
• N is divisible by twelve prime numbers.
How many digits does this number N have?Please Explain your steps in detail.
What have you done so far?
 
jonah said:
Beer induced query follows.

What have you done so far?
Dear Sir, I have been doing some rough, but I was unable to find the answer.

I have attached the rough.

So, in according to this if you can solve the problem. I will be very grateful to you.

The trouble is the divisibility by the first 12 prime numbers,
so it must be a multiple of 2*3*5*7*11*13*17*19*23*29*31*37

To be odd it must look like 2K+1

to be a square it must look like (2K+1)^2, and it must also be a cube
it must contain (2K+1)^6

so, it must have the form:
2*3*5*7*11*13*17*19*23*29*31*37(2K+1)^6
when K = 0, we get
2*3*5*7*11*13*17*19*23*29*31*37(1)^6
= 7.420738135... x 10^12
which would be 13 digits long

Please correct me if I am wrong!

I am really trying, please if anybody can solve this.

So, Please if you can solve this, I can use your answer as a reference and solve other related problems.

Please help me with my situation.
 
Just a quick note, if N is odd then it can't be divisible by 2!

-Dan
 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top