Find the solution using the KKT conditions.

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Conditions
Click For Summary

Discussion Overview

The discussion revolves around solving a constrained optimization problem using the Karush-Kuhn-Tucker (KKT) conditions. Participants explore the minimization of the function $$ \min [-x_1 - (x_2 -9)^2]$$ subject to the constraint $$4x_1^2+x_2^2 \leq 400$$. The focus is on the application of KKT conditions and the validity of proposed solutions.

Discussion Character

  • Technical explanation, Debate/contested, Mathematical reasoning

Main Points Raised

  • One participant suggests that the solution is $(0,9)$ and asks for confirmation of its correctness.
  • Another participant questions the validity of $(0,9)$ by proposing $(0,-9)$ as a potential solution, arguing it may yield a lower minimum while still satisfying the constraint.
  • Further discussion includes the KKT conditions and their implications, with one participant asserting that solutions cannot have negative values.
  • Another participant introduces the point $(10,0)$ and compares its objective function value to that of $(0,9)$, suggesting that $(10,0)$ may be a better solution.
  • One participant details the KKT conditions and analyzes the case where $μ_1=0$, concluding that $(0,9)$ satisfies all conditions, but questions whether they have made an error in their reasoning.
  • A later reply points out that the participant has found a point that maximizes the objective function instead of minimizing it, suggesting the need to consider a different case.

Areas of Agreement / Disagreement

Participants express differing views on the validity of the proposed solutions, with no consensus reached on the optimal solution. There are competing perspectives on the implications of the KKT conditions and the nature of the solutions.

Contextual Notes

Participants reference the KKT conditions but do not fully resolve the implications of different cases, particularly regarding the conditions under which solutions may be valid or optimal.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hi! :o

Given then following problem:
$$ \min [-x_1 - (x_2 -9)^2]$$
subject to $$4x_1^2+x_2^2 \leq 400$$
I have to find the solution using the KKT conditions.

I have found that the solution is $(0,9)$. Is my result correct?
 
Mathematics news on Phys.org
mathmari said:
Hi! :o

Given then following problem:
$$ \min [-x_1 - (x_2 -9)^2]$$
subject to $$4x_1^2+x_2^2 \leq 400$$
I have to find the solution using the KKT conditions.

I have found that the solution is $(0,9)$. Is my result correct?

Hey! :o

I don't understand?? :confused:

How about for instance $(0,-9)$?
Doesn't it have a lower minimum while still satisfying the condition?
 
I like Serena said:
Hey! :o

I don't understand?? :confused:

How about for instance $(0,-9)$?
Doesn't it have a lower minimum while still satisfying the condition?

Having the nonlinear problem:
$ \max f(x)$
$ g_i (x) \leq 0$
$x \geq 0$

the KKT conditions are:
$$μ_i \geq 0$$
$$\frac{\partial f}{\partial x_j}(x^*)-\sum_{i=1}^{p}μ_i \frac{\partial g_i}{\partial x_j}(x^*) \leq 0$$
$$x_j^*(\frac{\partial f}{\partial x_j}(x^*)-\sum_{i=1}^{p}μ_i \frac{\partial g_i}{\partial x_j}(x^*))=0$$
$$g_i(x^*) \leq 0$$
$$μ_i g_i (x^*) =0$$
$$x_j^* \geq 0$$

So the solution cannot have negative values.
 
mathmari said:
Having the nonlinear problem:
$ \max f(x)$
$ g_i (x) \leq 0$
$x \geq 0$

the KKT conditions are:
$$μ_i \geq 0$$
$$\frac{\partial f}{\partial x_j}(x^*)-\sum_{i=1}^{p}μ_i \frac{\partial g_i}{\partial x_j}(x^*) \leq 0$$
$$x_j^*(\frac{\partial f}{\partial x_j}(x^*)-\sum_{i=1}^{p}μ_i \frac{\partial g_i}{\partial x_j}(x^*))=0$$
$$g_i(x^*) \leq 0$$
$$μ_i g_i (x^*) =0$$
$$x_j^* \geq 0$$

So the solution cannot have negative values.

Okay... how about (10, 0) then?
Better or worse?
 
I like Serena said:
Okay... how about (10, 0) then?
Better or worse?

(Thinking)
Since the objective function at the point (10,0) is -91, and with (0,9) it's 0, I assume that yours is better..

I did the following:
The KKT conditions for this proble are:
KKT1: $μ_1 \geq 0$
KKT2: $-1-μ_1 8x_1 \leq 0$
KKT3: $-2(x_2-9)-μ_1 2 x_2 \leq 0$
KKT4: $ x_1 (-1-μ_1 8x_1 )=0$
KKT5: $ x_2 (-2(x_2-9)-μ_1 2 x_2 )=0$
KKT6: $ 4x_1^2+x_2^2-400 \leq 0$
KKT7: $ μ_1 (4x_1^2+x_2^2-400 )=0$
KKT8: $ x_1 \geq 0$
KKT9: $ x_2 \geq 0$

Case1: $μ_1=0$
KKT4: $-x_1=0 \Rightarrow x_1=0$
KKT5: $-2x_2(x_2-9)=0 \Rightarrow x_2=0 \text{ or } x_2=9$
For $x_2=0$, at KKT3:$18 \leq 0$ that is not true, so $x_2 \neq 0$
Since, for $μ_1=0$, $x_1=0$ and $x_2=9$ all conditions are satisfied, $(0,9)$ is a solution. Then I showed that the function $f$ is concave, so this solution is unique.

Have I done something wrong? :confused:
 
mathmari said:
(Thinking)
Since the objective function at the point (10,0) is -91, and with (0,9) it's 0, I assume that yours is better..

I did the following:
The KKT conditions for this proble are:
KKT1: $μ_1 \geq 0$
KKT2: $-1-μ_1 8x_1 \leq 0$
KKT3: $-2(x_2-9)-μ_1 2 x_2 \leq 0$
KKT4: $ x_1 (-1-μ_1 8x_1 )=0$
KKT5: $ x_2 (-2(x_2-9)-μ_1 2 x_2 )=0$
KKT6: $ 4x_1^2+x_2^2-400 \leq 0$
KKT7: $ μ_1 (4x_1^2+x_2^2-400 )=0$
KKT8: $ x_1 \geq 0$
KKT9: $ x_2 \geq 0$

Case1: $μ_1=0$
KKT4: $-x_1=0 \Rightarrow x_1=0$
KKT5: $-2x_2(x_2-9)=0 \Rightarrow x_2=0 \text{ or } x_2=9$
For $x_2=0$, at KKT3:$18 \leq 0$ that is not true, so $x_2 \neq 0$
Since, for $μ_1=0$, $x_1=0$ and $x_2=9$ all conditions are satisfied, $(0,9)$ is a solution. Then I showed that the function $f$ is concave, so this solution is unique.

Have I done something wrong? :confused:
You have found the unique point $(x_1,x_2) = (0,9)$ that maximises the objective function. But you want to minimise it. So it looks as though you need to consider Case2: $μ_1\ne0$.
 
Opalg said:
You have found the unique point $(x_1,x_2) = (0,9)$ that maximises the objective function. But you want to minimise it. So it looks as though you need to consider Case2: $μ_1\ne0$.

Ok...Thank you..! :o
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K