MHB Find the sum of all possible values

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$a,\,b$ and $c$ are positive real numbers such that $25bc+9ac+ab=9abc$ and $a+b+c=9$.

Find the sum of all possible values of $abc$.
 
Mathematics news on Phys.org
anemone said:
$a,\,b$ and $c$ are positive real numbers such that $25bc+9ac+ab=9abc$ and $a+b+c=9$.

Find the sum of all possible values of $abc$.
[sp]Let $a=5x$, $b=3y$ and $c=z$. Then (after dividing the first one by $abc$) the equations become $$\frac5x + \frac3y + \frac1z = 9, \qquad 5x + 3y + z = 9.$$ Add those, to get $5\Bigl(x+\dfrac1x\bigr) + 3\Bigl(y+\dfrac1y\bigr) + \Bigl(z+\dfrac1z\bigr) = 18.$

For $t>0$ the minimum value of $t + \dfrac1t$ is 2, attained only when $t=1$. Therefore the minimum value of $5\Bigl(x+\dfrac1x\bigr) + 3\Bigl(y+\dfrac1y\bigr) + \Bigl(z+\dfrac1z\bigr)$ is $2(5+3+1) = 18$, and this is attained only when $x=y=z=1.$ Thus the original equations have the unique solution $a=5$, $b=3$, $c=1$, with $abc = 15$.[/sp]
 
Opalg said:
[sp]Let $a=5x$, $b=3y$ and $c=z$. Then (after dividing the first one by $abc$) the equations become $$\frac5x + \frac3y + \frac1z = 9, \qquad 5x + 3y + z = 9.$$ Add those, to get $5\Bigl(x+\dfrac1x\bigr) + 3\Bigl(y+\dfrac1y\bigr) + \Bigl(z+\dfrac1z\bigr) = 18.$

For $t>0$ the minimum value of $t + \dfrac1t$ is 2, attained only when $t=1$. Therefore the minimum value of $5\Bigl(x+\dfrac1x\bigr) + 3\Bigl(y+\dfrac1y\bigr) + \Bigl(z+\dfrac1z\bigr)$ is $2(5+3+1) = 18$, and this is attained only when $x=y=z=1.$ Thus the original equations have the unique solution $a=5$, $b=3$, $c=1$, with $abc = 15$.[/sp]

Thanks Opalg for participating! :cool:

Solution of other:
Since $a,\,b,\,c>0$, we can divide the first equation by $abc$ and get

$\dfrac{25}{a}+\dfrac{9}{b}+\dfrac{1}{c}=9$, i.e.

Note that we can borrow and use Cauchy-Schwarz Inequality in the following manner:

$\left(\left(\dfrac{5}{\sqrt{a}}\cdot \sqrt{a}\right)+\left(\dfrac{3}{\sqrt{b}}\cdot \sqrt{b}\right)+\left(\dfrac{1}{\sqrt{c}}\cdot \sqrt{c}\right)\right)^2\le \left(\dfrac{5^2}{a}+\dfrac{3^2}{b}+\dfrac{1^2}{c}\right)(a+b+c)$

$(5+3+1)^2\le \left(\dfrac{5^2}{a}+\dfrac{3^2}{b}+\dfrac{1^2}{c}\right)(9)$

$9\le \dfrac{25}{a}+\dfrac{9}{b}+\dfrac{1}{c}$

But we are told $\dfrac{25}{a}+\dfrac{9}{b}+\dfrac{1}{c}=9$.

Therefore, equality for the Cauchy-Schwarz Inequality above holds when

$\dfrac{5^2}{a^2}=\dfrac{3^2}{b^2}=\dfrac{1^2}{c^2}$ from which we get the unique solution where

$a=5,\,b=3,\,c=1$

Hence the sum of all possible values of $abc$ is $5(3)(1)=15$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
0
Views
2K
Replies
3
Views
4K
Back
Top