MHB Find the sum of three trigonometric terms

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\tan^4 10^\circ+\tan^4 50^\circ+\tan^4 70^\circ$$ without the help of a calculator.
 
Mathematics news on Phys.org
Let $\tan^2 10^\circ = x_{1}$ and $\tan^2 50^\circ =x_{2}$ and $\tan^2 70^\circ = x_{3}$

Then $\displaystyle \tan^2(3\cdot 10^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 50^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 70^\circ ) = \frac{1}{3}$

Using $\displaystyle \tan (3x) = \frac{3\tan x-\tan^3 x}{1-3\tan^2 x} = \frac{1}{\sqrt{3}}$

So $\displaystyle \frac{1}{3} = \left(\frac{3\tan x-\tan^3 x}{1-3\tan^2 x}\right)^2\Rightarrow (1-3\tan^2 x)^2 = 3(3\tan x-\tan^3 x)^2$

So $\displaystyle 1+9\tan^4 x-6\tan^2 x = 27\tan^2 x+3\tan^6 x-18\tan^4 x$

So $\displaystyle 3\tan^6 x-27\tan^4 x+33\tan^2 x-1=0$

has a roots $x_{i}=\tan^2(\theta)\;,$ Where $\theta = 10^\circ\;,50^\circ\;,70^\circ$

So we can say $x_{1}\;,x_{2}\;,x_{3}$ are the roots of $3x^3-27x^2+33x-1=0$

So $\displaystyle x_{1}+x_{2}+x_{3} = 9$ and $x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1} = 11$

So Using Identity $\displaystyle \left(x_{1}+x_{2}+x_{3}\right)^2 = x^2_{1}+x^2_{2}+x^2_{3}+2(x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1})$

So $\displaystyle x^2_{1}+x^2_{2}+x^2_{3} = 9^2-2(11) = 81-22 = 59$
 
Last edited by a moderator:
jacks said:
Let $\tan^2 10^\circ = x_{1}$ and $\tan^2 50^\circ =x_{2}$ and $\tan^2 70^\circ = x_{3}$

Then $\displaystyle \tan^2(3\cdot 10^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 50^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 70^\circ ) = \frac{1}{3}$

Using $\displaystyle \tan (3x) = \frac{3\tan x-\tan^3 x}{1-3\tan^2 x} = \frac{1}{\sqrt{3}}$

So $\displaystyle \frac{1}{3} = \left(\frac{3\tan x-\tan^3 x}{1-3\tan^2 x}\right)^2\Rightarrow (1-3\tan^2 x)^2 = 3(3\tan x-\tan^3 x)^2$

So $\displaystyle 1+9\tan^4 x-6\tan^2 x = 27\tan^2 x+3\tan^6 x-18\tan^4 x$

So $\displaystyle 3\tan^6 x-27\tan^4 x+33\tan^2 x-1=0$

has a roots $x_{i}=\tan^2(\theta)\;,$ Where $\theta = 10^\circ\;,50^\circ\;,70^\circ$

So we can say $x_{1}\;,x_{2}\;,x_{3}$ are the roots of $3x^3-27x^2+33x-1=0$

So $\displaystyle x_{1}+x_{2}+x_{3} = 9$ and $x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1} = 11$

So Using Identity $\displaystyle \left(x_{1}+x_{2}+x_{3}\right)^2 = x^2_{1}+x^2_{2}+x^2_{3}+2(x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1})$

So $\displaystyle x^2_{1}+x^2_{2}+x^2_{3} = 9^2-2(11) = 81-22 = 59$

Bravo, jacks!(Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K