MHB Find the sum of three trigonometric terms

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\tan^4 10^\circ+\tan^4 50^\circ+\tan^4 70^\circ$$ without the help of a calculator.
 
Mathematics news on Phys.org
Let $\tan^2 10^\circ = x_{1}$ and $\tan^2 50^\circ =x_{2}$ and $\tan^2 70^\circ = x_{3}$

Then $\displaystyle \tan^2(3\cdot 10^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 50^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 70^\circ ) = \frac{1}{3}$

Using $\displaystyle \tan (3x) = \frac{3\tan x-\tan^3 x}{1-3\tan^2 x} = \frac{1}{\sqrt{3}}$

So $\displaystyle \frac{1}{3} = \left(\frac{3\tan x-\tan^3 x}{1-3\tan^2 x}\right)^2\Rightarrow (1-3\tan^2 x)^2 = 3(3\tan x-\tan^3 x)^2$

So $\displaystyle 1+9\tan^4 x-6\tan^2 x = 27\tan^2 x+3\tan^6 x-18\tan^4 x$

So $\displaystyle 3\tan^6 x-27\tan^4 x+33\tan^2 x-1=0$

has a roots $x_{i}=\tan^2(\theta)\;,$ Where $\theta = 10^\circ\;,50^\circ\;,70^\circ$

So we can say $x_{1}\;,x_{2}\;,x_{3}$ are the roots of $3x^3-27x^2+33x-1=0$

So $\displaystyle x_{1}+x_{2}+x_{3} = 9$ and $x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1} = 11$

So Using Identity $\displaystyle \left(x_{1}+x_{2}+x_{3}\right)^2 = x^2_{1}+x^2_{2}+x^2_{3}+2(x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1})$

So $\displaystyle x^2_{1}+x^2_{2}+x^2_{3} = 9^2-2(11) = 81-22 = 59$
 
Last edited by a moderator:
jacks said:
Let $\tan^2 10^\circ = x_{1}$ and $\tan^2 50^\circ =x_{2}$ and $\tan^2 70^\circ = x_{3}$

Then $\displaystyle \tan^2(3\cdot 10^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 50^\circ ) = \frac{1}{3}$ and $\displaystyle \tan^2(3\cdot 70^\circ ) = \frac{1}{3}$

Using $\displaystyle \tan (3x) = \frac{3\tan x-\tan^3 x}{1-3\tan^2 x} = \frac{1}{\sqrt{3}}$

So $\displaystyle \frac{1}{3} = \left(\frac{3\tan x-\tan^3 x}{1-3\tan^2 x}\right)^2\Rightarrow (1-3\tan^2 x)^2 = 3(3\tan x-\tan^3 x)^2$

So $\displaystyle 1+9\tan^4 x-6\tan^2 x = 27\tan^2 x+3\tan^6 x-18\tan^4 x$

So $\displaystyle 3\tan^6 x-27\tan^4 x+33\tan^2 x-1=0$

has a roots $x_{i}=\tan^2(\theta)\;,$ Where $\theta = 10^\circ\;,50^\circ\;,70^\circ$

So we can say $x_{1}\;,x_{2}\;,x_{3}$ are the roots of $3x^3-27x^2+33x-1=0$

So $\displaystyle x_{1}+x_{2}+x_{3} = 9$ and $x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1} = 11$

So Using Identity $\displaystyle \left(x_{1}+x_{2}+x_{3}\right)^2 = x^2_{1}+x^2_{2}+x^2_{3}+2(x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{1})$

So $\displaystyle x^2_{1}+x^2_{2}+x^2_{3} = 9^2-2(11) = 81-22 = 59$

Bravo, jacks!(Cool)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K