songoku
- 2,508
- 402
- Homework Statement
- Find the Taylor series of ##f(x) = \frac{1}{(2 - x)^2}## centered at 0
##a. f(x) = \sum_{n=0}^\infty \frac{n+1}{2^{n+2}} x^n##
##b. f(x) = \sum_{n=0}^\infty (-1)^n \frac{n+1}{2^{n+2}} x^n##
##c. f(x) = \sum_{n=0}^\infty \frac{n}{2^{n}} x^n##
##d. f(x) = \sum_{n=0}^\infty \frac{n+1}{2^{n+1}} x^n##
##e. f(x) = \sum_{n=0}^\infty \frac{n+2}{2^{n}} x^n##
- Relevant Equations
- Taylor series
Maclaurin series
Standard power series
Because the Taylor series centered at 0, it is same as Maclaurin series. My attempts:
1st attempt
<br /> \begin{align}<br /> \frac{1}{1-x} = \sum_{n=0}^\infty x^n\\<br /> \\<br /> \frac{1}{x} = \frac{1}{1-(1-x)} = \sum_{n=0}^\infty (1-x)^n\\<br /> \\<br /> \frac{1}{x^2} = \sum_{n=0}^\infty (1-x^2)^n\\<br /> \\<br /> \frac{1}{(2-x)^2} = \sum_{n=0}^\infty (1-(2-x)^2)^n\\<br /> \\<br /> = \sum_{n=0}^\infty (-x^2 + 4x -3)^n\\<br /> \\<br /> = \sum_{n=0}^\infty (-1)^n (x-3)^n (x-1)^n<br /> \end{align}<br />
Then how to continue?2nd attempt: I do the derivative manually and put it into Maclaurin series formula and I end up with:
## f(x) = \sum_{n=0}^\infty \frac{(n+1)!}{2^{(n+2)}} x^n##
Is my answer on 2nd attempt wrong? Or the choices of the question are wrong?
Thanks
1st attempt
<br /> \begin{align}<br /> \frac{1}{1-x} = \sum_{n=0}^\infty x^n\\<br /> \\<br /> \frac{1}{x} = \frac{1}{1-(1-x)} = \sum_{n=0}^\infty (1-x)^n\\<br /> \\<br /> \frac{1}{x^2} = \sum_{n=0}^\infty (1-x^2)^n\\<br /> \\<br /> \frac{1}{(2-x)^2} = \sum_{n=0}^\infty (1-(2-x)^2)^n\\<br /> \\<br /> = \sum_{n=0}^\infty (-x^2 + 4x -3)^n\\<br /> \\<br /> = \sum_{n=0}^\infty (-1)^n (x-3)^n (x-1)^n<br /> \end{align}<br />
Then how to continue?2nd attempt: I do the derivative manually and put it into Maclaurin series formula and I end up with:
## f(x) = \sum_{n=0}^\infty \frac{(n+1)!}{2^{(n+2)}} x^n##
Is my answer on 2nd attempt wrong? Or the choices of the question are wrong?
Thanks