MHB Find the Two-Digit Number: Exceeds by 4 and 1 Less Than Twice the Units Digit

  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Units
paulmdrdo1
Messages
382
Reaction score
0
The tens digit of a certain two-digit number exceeds the units digit by 4 and is 1 less than twice the units digit. Find the two-digit number.

this is my solution,

let $x=$ tens digit, $x-4=$units digit.

$x=2(x-4)-1$ then, $x=9$ and $9-4=5$

the number is 59

but when I let $x=$ units digit and $x+4=$ tens digit I get the answer of 95.

can you tell me which one is correct?

tnahks!
 
Mathematics news on Phys.org
Re: digit problems.

I let $T$ be the tens digit and $U$ be the units digit, and so:

$$T=U+4=2U-1\implies U=5\implies T=9$$

And so the two digit number is $95$.
 
Re: digit problems.

paulmdrdo said:
let $x=$ tens digit... $x=9$ and $9-4=5$

the number is 59
No, it's 95.
 
Re: digit problems.

paulmdrdo said:
The tens digit of a certain two-digit number exceeds the units digit by 4 and is 1 less than twice the units digit. Find the two-digit number.

this is my solution,

let $x=$ tens digit, $x-4=$units digit.

$x=2(x-4)-1$ then, $x=9$ and $9-4=5$

the number is 59

but when I let $x=$ units digit and $x+4=$ tens digit I get the answer of 95.

can you tell me which one is correct?

tnahks!

In your solution you said: "let $x$ be the tens digit", and then solved for $x$ to obtain $x = 9$.

Thus your number is 9_ (ninety-something).

Solving for the unit digit, which you have as $x - 4$, you obtained: 5.

Thus your number is 95.

You solved it correctly, but misinterpreted your own solution.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top