MHB Find the Two-Digit Number: Exceeds by 4 and 1 Less Than Twice the Units Digit

  • Thread starter Thread starter paulmdrdo1
  • Start date Start date
  • Tags Tags
    Units
AI Thread Summary
The problem involves finding a two-digit number where the tens digit exceeds the units digit by 4 and is also 1 less than twice the units digit. The correct interpretation leads to the tens digit being 9 and the units digit being 5, resulting in the number 95. A miscalculation occurred when the tens digit was incorrectly identified as the units digit, leading to confusion. Ultimately, the correct two-digit number is 95, confirmed by multiple calculations. The discussion emphasizes the importance of correctly interpreting the relationships between the digits.
paulmdrdo1
Messages
382
Reaction score
0
The tens digit of a certain two-digit number exceeds the units digit by 4 and is 1 less than twice the units digit. Find the two-digit number.

this is my solution,

let $x=$ tens digit, $x-4=$units digit.

$x=2(x-4)-1$ then, $x=9$ and $9-4=5$

the number is 59

but when I let $x=$ units digit and $x+4=$ tens digit I get the answer of 95.

can you tell me which one is correct?

tnahks!
 
Mathematics news on Phys.org
Re: digit problems.

I let $T$ be the tens digit and $U$ be the units digit, and so:

$$T=U+4=2U-1\implies U=5\implies T=9$$

And so the two digit number is $95$.
 
Re: digit problems.

paulmdrdo said:
let $x=$ tens digit... $x=9$ and $9-4=5$

the number is 59
No, it's 95.
 
Re: digit problems.

paulmdrdo said:
The tens digit of a certain two-digit number exceeds the units digit by 4 and is 1 less than twice the units digit. Find the two-digit number.

this is my solution,

let $x=$ tens digit, $x-4=$units digit.

$x=2(x-4)-1$ then, $x=9$ and $9-4=5$

the number is 59

but when I let $x=$ units digit and $x+4=$ tens digit I get the answer of 95.

can you tell me which one is correct?

tnahks!

In your solution you said: "let $x$ be the tens digit", and then solved for $x$ to obtain $x = 9$.

Thus your number is 9_ (ninety-something).

Solving for the unit digit, which you have as $x - 4$, you obtained: 5.

Thus your number is 95.

You solved it correctly, but misinterpreted your own solution.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top