MHB Find the Units Digit of An Expression

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression Units
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
What is the units digit of $$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor$$?
 
Mathematics news on Phys.org
I found this to be a very interesting problem...(Clapping)

My solution:

I began by writing:

$$\frac{10^{20000}}{10^{100}+3}=10^{19900}-3\cdot\frac{10^{19900}}{10^{100}+3}$$

Continuing in this manner, we will find:

$$\frac{10^{20000}}{10^{100}+3}= \sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}+\frac{9^{100}}{10^{100}+3}$$

Hence:

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=\sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}$$

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=m\cdot10^{100}-(3)^{199}$$ where $$m\in\mathbb{N}$$

Now, we need only find the units digit of $$3^{199}$$ and subtract it from 10. Borrowing from my solution to last week's High School POTW...

Observing that:

$$3^{4(1)-1}=27$$

$$3^{4(2)-1}=2187$$

We may choose to state the induction hypothesis $P_n$:

$$3^{4n-1}=10k_n+7$$

As the induction step, we may add:

$$3^{4(n+1)-1}-3^{4n-1}=80\cdot3^{4n-1}=80\left(10k_n+7 \right)$$

to get:

$$3^{4(n+1)-1}=80\left(10k_n+7 \right)+10k_n+7=10\left(8\left(10k_n+7 \right)+k_n \right)+7$$

If we make the recursive definition:

$$k_{n+1}\equiv8\left(10k_n+7 \right)+k_n$$ where $$k_1=2$$

we then have:

$$3^{4(n+1)-1}=10k_{n+1}+7$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Thus, we find the units digit of the original expression is:

$$10-7=3$$
 
MarkFL said:
I found this to be a very interesting problem...(Clapping)

Thanks...and

MarkFL said:
My solution:

I began by writing:

$$\frac{10^{20000}}{10^{100}+3}=10^{19900}-3\cdot\frac{10^{19900}}{10^{100}+3}$$

Continuing in this manner, we will find:

$$\frac{10^{20000}}{10^{100}+3}= \sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}+\frac{9^{100}}{10^{100}+3}$$

Hence:

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=\sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}$$

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=m\cdot10^{100}-(3)^{199}$$ where $$m\in\mathbb{N}$$

Now, we need only find the units digit of $$3^{199}$$ and subtract it from 10. Borrowing from my solution to last week's High School POTW...

Observing that:

$$3^{4(1)-1}=27$$

$$3^{4(2)-1}=2187$$

We may choose to state the induction hypothesis $P_n$:

$$3^{4n-1}=10k_n+7$$

As the induction step, we may add:

$$3^{4(n+1)-1}-3^{4n-1}=80\cdot3^{4n-1}=80\left(10k_n+7 \right)$$

to get:

$$3^{4(n+1)-1}=80\left(10k_n+7 \right)+10k_n+7=10\left(8\left(10k_n+7 \right)+k_n \right)+7$$

If we make the recursive definition:

$$k_{n+1}\equiv8\left(10k_n+7 \right)+k_n$$ where $$k_1=2$$

we then have:

$$3^{4(n+1)-1}=10k_{n+1}+7$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Thus, we find the units digit of the original expression is:

$$10-7=3$$

Well done, MarkFL!(Clapping)

I sure like your approach very very much!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top