MHB Find the Units Digit of An Expression

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Expression Units
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
What is the units digit of $$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor$$?
 
Mathematics news on Phys.org
I found this to be a very interesting problem...(Clapping)

My solution:

I began by writing:

$$\frac{10^{20000}}{10^{100}+3}=10^{19900}-3\cdot\frac{10^{19900}}{10^{100}+3}$$

Continuing in this manner, we will find:

$$\frac{10^{20000}}{10^{100}+3}= \sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}+\frac{9^{100}}{10^{100}+3}$$

Hence:

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=\sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}$$

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=m\cdot10^{100}-(3)^{199}$$ where $$m\in\mathbb{N}$$

Now, we need only find the units digit of $$3^{199}$$ and subtract it from 10. Borrowing from my solution to last week's High School POTW...

Observing that:

$$3^{4(1)-1}=27$$

$$3^{4(2)-1}=2187$$

We may choose to state the induction hypothesis $P_n$:

$$3^{4n-1}=10k_n+7$$

As the induction step, we may add:

$$3^{4(n+1)-1}-3^{4n-1}=80\cdot3^{4n-1}=80\left(10k_n+7 \right)$$

to get:

$$3^{4(n+1)-1}=80\left(10k_n+7 \right)+10k_n+7=10\left(8\left(10k_n+7 \right)+k_n \right)+7$$

If we make the recursive definition:

$$k_{n+1}\equiv8\left(10k_n+7 \right)+k_n$$ where $$k_1=2$$

we then have:

$$3^{4(n+1)-1}=10k_{n+1}+7$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Thus, we find the units digit of the original expression is:

$$10-7=3$$
 
MarkFL said:
I found this to be a very interesting problem...(Clapping)

Thanks...and

MarkFL said:
My solution:

I began by writing:

$$\frac{10^{20000}}{10^{100}+3}=10^{19900}-3\cdot\frac{10^{19900}}{10^{100}+3}$$

Continuing in this manner, we will find:

$$\frac{10^{20000}}{10^{100}+3}= \sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}+\frac{9^{100}}{10^{100}+3}$$

Hence:

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=\sum_{k=1}^{199}\left((-3)^{k-1}10^{100(200-k)} \right)-(3)^{199}$$

$$\left\lfloor \frac{10^{20000}}{10^{100}+3} \right\rfloor=m\cdot10^{100}-(3)^{199}$$ where $$m\in\mathbb{N}$$

Now, we need only find the units digit of $$3^{199}$$ and subtract it from 10. Borrowing from my solution to last week's High School POTW...

Observing that:

$$3^{4(1)-1}=27$$

$$3^{4(2)-1}=2187$$

We may choose to state the induction hypothesis $P_n$:

$$3^{4n-1}=10k_n+7$$

As the induction step, we may add:

$$3^{4(n+1)-1}-3^{4n-1}=80\cdot3^{4n-1}=80\left(10k_n+7 \right)$$

to get:

$$3^{4(n+1)-1}=80\left(10k_n+7 \right)+10k_n+7=10\left(8\left(10k_n+7 \right)+k_n \right)+7$$

If we make the recursive definition:

$$k_{n+1}\equiv8\left(10k_n+7 \right)+k_n$$ where $$k_1=2$$

we then have:

$$3^{4(n+1)-1}=10k_{n+1}+7$$

We have derived $P_{n+1}$ from $P_n$ thereby completing the proof by induction.

Thus, we find the units digit of the original expression is:

$$10-7=3$$

Well done, MarkFL!(Clapping)

I sure like your approach very very much!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top