- #1
- 2,168
- 193
Let suppose I have three positive integers ##a, b,c## and one unknown ##x## (##x## is also a positive integer). Solve for the smallest ##x## that satisfies this equation$$\left \lfloor\frac{x}{a} \right\rfloor + \left \lfloor \frac{x}{b} \right\rfloor \geq c$$
where ##\lfloor x\rfloor## is the [floor function][1]
For instance let ##a = 1##, ##b=1## and ##c=5## in this case
$$\left \lfloor x \right\rfloor + \left \lfloor x \right\rfloor \geq 5$$
here the smallest ##x## is ##3##.
For another case, if ##a=3## and ##b=5## and ##c=4## we obtain
$$\left \lfloor\frac{x}{3} \right\rfloor + \left \lfloor \frac{x}{5} \right\rfloor \geq 4$$
here the smallest ##x## is ##9##
My question is, can we find the smallest ##x## exactly ?
[1]: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
where ##\lfloor x\rfloor## is the [floor function][1]
For instance let ##a = 1##, ##b=1## and ##c=5## in this case
$$\left \lfloor x \right\rfloor + \left \lfloor x \right\rfloor \geq 5$$
here the smallest ##x## is ##3##.
For another case, if ##a=3## and ##b=5## and ##c=4## we obtain
$$\left \lfloor\frac{x}{3} \right\rfloor + \left \lfloor \frac{x}{5} \right\rfloor \geq 4$$
here the smallest ##x## is ##9##
My question is, can we find the smallest ##x## exactly ?
[1]: https://en.wikipedia.org/wiki/Floor_and_ceiling_functions