Find the Value of $f(102)$ for $f(x)$ of Degree 100

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Degree Value
Click For Summary
SUMMARY

The polynomial function \( f(x) \) is of degree 100, defined such that \( f(k) = \frac{1}{k} \) for \( k = 1, 2, \ldots, 101 \). To find \( f(102) \), one must utilize polynomial interpolation techniques, specifically Lagrange interpolation or Newton's divided differences. The correct value of \( f(102) \) can be determined by evaluating the polynomial at this point, ensuring that the conditions for the given values are satisfied.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Familiarity with polynomial interpolation methods, specifically Lagrange interpolation
  • Knowledge of Newton's divided differences
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study Lagrange interpolation for polynomial functions
  • Learn about Newton's divided differences and their applications
  • Explore the properties of polynomial functions of higher degrees
  • Practice solving polynomial equations with specific constraints
USEFUL FOR

Mathematicians, students studying polynomial functions, and educators looking to enhance their understanding of polynomial interpolation techniques.

Albert1
Messages
1,221
Reaction score
0
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} , \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$
hint:
set: $g(x)=xf(x)-1$
 
Albert said:
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} , \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$

take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = -1 $ or $f(102) = 0$

above solution is incorrect the solution is

take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = 1 $ or $f(102) = \frac{1}{51}$
 
Last edited:
kaliprasad said:
take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = -1 $ or $f(102) = 0$
please check again $g(102)=?$
 
Albert said:
please check again $g(102)=?$

oops
g(102) = 1 and I shall update the solution above
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
991
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
5
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K