MHB Find the Value of $f(102)$ for $f(x)$ of Degree 100

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Degree Value
AI Thread Summary
The discussion revolves around finding the value of the polynomial function $f(102)$, where $f(x)$ is a degree 100 polynomial defined by $f(k) = \frac{1}{k}$ for integers $k$ from 1 to 101. Participants note that the initial solution provided is incorrect, indicating a misunderstanding or miscalculation. The problem emphasizes the need for careful evaluation of polynomial properties and constraints given the specific values at integer points. The hint reiterates the polynomial's degree and the conditions for $f(k)$. Ultimately, the correct approach to determine $f(102)$ remains unresolved in this thread.
Albert1
Messages
1,221
Reaction score
0
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} , \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$
hint:
set: $g(x)=xf(x)-1$
 
Albert said:
$f(x)$ is a real polynominal function with degree 100,and $f(k)=\dfrac {1}{k} , \,\,(k=1,2,3,4,5,------,101),$
please find $f(102)=?$

take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = -1 $ or $f(102) = 0$

above solution is incorrect the solution is

take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = 1 $ or $f(102) = \frac{1}{51}$
 
Last edited:
kaliprasad said:
take $g(x) = x f(x) - 1$
it is polynomial of degree 101 and zero for x = 1 through 101
so $g(x) = A (x-1)(x-2)\cdots(x-101)$
the constant term = $- A * 101! = -1$ so $A = \frac{1}{101!}$

so $g(x) = \frac{1}{101!} (x-1)(x-2)(x-3)\cdots(x-101)$
or $g(102) = 102 f(102) - 1 = -1 $ or $f(102) = 0$
please check again $g(102)=?$
 
Albert said:
please check again $g(102)=?$

oops
g(102) = 1 and I shall update the solution above
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top