MHB Find $\vec{AC}.\vec{AB}$ in Rectangle $ABCD$

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Rectangle
Click For Summary
In rectangle $ABCD$, with $\angle CAB = 30^\circ$ and the condition $\vec{AC} \cdot \vec{AD} = |\vec{AC}|$, the value of $\vec{AC} \cdot \vec{AB}$ is sought. The geometric relationships and properties of rectangles are utilized to derive the solution. The discussion confirms that the calculations leading to the answer are correct. The focus remains on applying vector dot product principles in the context of the rectangle. Ultimately, the solution is validated as accurate.
Albert1
Messages
1,221
Reaction score
0
Rectangle $ABCD$ given :$\angle CAB=30^o$ ,and $\vec{AC}.\vec{AD}=\mid\vec{AC}\,\, \mid$

please find the value of :$\vec{AC}.\vec{AB}$
 
Mathematics news on Phys.org
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
 
greg1313 said:
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
good ! your answer is correct
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K