Find $\vec{AC}.\vec{AB}$ in Rectangle $ABCD$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Rectangle
Click For Summary
SUMMARY

The discussion focuses on calculating the dot product of vectors in rectangle $ABCD$, specifically $\vec{AC} \cdot \vec{AB}$. Given that $\angle CAB = 30^\circ$ and the condition $\vec{AC} \cdot \vec{AD} = |\vec{AC}|$, the relationship between the vectors is established. The conclusion confirms that the calculation of $\vec{AC} \cdot \vec{AB}$ is accurate and aligns with the geometric properties of the rectangle.

PREREQUISITES
  • Understanding of vector notation and operations
  • Knowledge of geometric properties of rectangles
  • Familiarity with trigonometric functions, specifically cosine
  • Ability to compute dot products of vectors
NEXT STEPS
  • Study vector operations in Euclidean geometry
  • Learn about the properties of dot products and their applications
  • Explore trigonometric identities related to angles in geometric figures
  • Investigate the implications of vector magnitudes in geometric contexts
USEFUL FOR

Students of geometry, mathematicians, and anyone interested in vector analysis within geometric shapes.

Albert1
Messages
1,221
Reaction score
0
Rectangle $ABCD$ given :$\angle CAB=30^o$ ,and $\vec{AC}.\vec{AD}=\mid\vec{AC}\,\, \mid$

please find the value of :$\vec{AC}.\vec{AB}$
 
Physics news on Phys.org
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
 
greg1313 said:
$$\vec{AC}\cdot\vec{AD}=|\vec{AC}||\vec{AD}|\cos(60)=\frac12|\vec{AC}||\vec{AD}|=|\vec{AC}|\implies|\vec{AD}|=2$$

$$|\vec{AC}|\cos(60)=2\implies|\vec{AC}|=4\implies|\vec{AB}|=\sqrt{12}$$

$$\vec{AC}\cdot\vec{AB}=4\sqrt{12}\cos(30)=12$$
good ! your answer is correct
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K