Find x_1+x_3+x_5+--------+x_999

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the equation system defined by $x_1+x_2=x_2+x_3=x_3+x_4=x_4+x_5=...=x_{998}+x_{999}=1$ and $x_1+x_2+x_3+x_4+x_5+...+x_{999}=999$. The goal is to determine the sum of the odd-indexed variables, specifically $x_1+x_3+x_5+x_7+...+x_{999}$. The established conclusion is that the sum of the odd-indexed variables equals 500, derived from the uniform distribution of the variables across the defined constraints.

PREREQUISITES
  • Understanding of algebraic equations and systems of equations
  • Familiarity with summation notation and series
  • Knowledge of variable indexing in mathematical expressions
  • Basic principles of linear equations and their solutions
NEXT STEPS
  • Study linear algebra concepts related to systems of equations
  • Explore techniques for solving simultaneous equations
  • Learn about mathematical induction and its applications
  • Investigate properties of arithmetic series and their sums
USEFUL FOR

Mathematics students, educators, and anyone interested in solving complex algebraic equations or enhancing their problem-solving skills in algebra.

Albert1
Messages
1,221
Reaction score
0
$x_1+x_2=x_2+x_3=x_3+x_4=x_4+x_5=--------=x_{998}+x_{999}=1$

$x_1+x_2+x_3+x_4+x_5+--------+x_{999}=999$

find :

$x_1+x_3+x_5+x_7+---+x_{999}=?$
 
Mathematics news on Phys.org
Albert said:
$x_1+x_2=x_2+x_3=x_3+x_4=x_4+x_5=--------=x_{998}+x_{999}=1$

$x_1+x_2+x_3+x_4+x_5+--------+x_{999}=999$

find :

$x_1+x_3+x_5+x_7+---+x_{999}=?$

Given
$x_1+x_2=x_2+x_3=x_3+x_4=x_4+x_5=\cdots=x_{998}+x_{999}=1\cdots(1)$
$x_1+x_2+x_3+x_4+x_5+\cdots+x_{999}=999\cdots(2)$
we have $x_1+x_2=x_2+x_3$ => $x_1= x_3$ ( from (1)
proceeding this way
$x_1 = x_3 = x_ 5 = \cdots = x_{999}\cdots(3)$
and similarly
$x_2 = x_4 = x_ 6 =\cdots = x_{998}\cdots(4)$
further from given relations
$x_1+ x_2 = 1\cdots(5) $ (from(1)
and $500x_1 + 499x_2 = 999\cdots(6) $ from (2), (3) and (4)
multiply (5) by 499 and subtract from (6) giving
$x_1 = 500$
so $x_1+x_3+x_5+x_7+---+x_{999}=500^2 = 250000$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K