MHB Find zeros of polynomial and factor it out, find the reals and complex numbers

AI Thread Summary
The polynomial function f(x) = 3x^2 + 2x + 10 has no real roots, as indicated by the negative discriminant (Δ = -116). Using the quadratic formula, the roots are found to be x₁ = (-1 + i√29)/3 and x₂ = (-1 - i√29)/3, where "i" represents the imaginary unit. Completing the square confirms that the minimum value of the function is greater than zero, reinforcing the absence of real solutions. Therefore, the polynomial only has complex roots.
datafiend
Messages
31
Reaction score
0
Hi all,
$$f(x) = 3x^2+2x+10$$

I recognized that this a quadratic and used the quadratic formula. I came up with $$-1/3+-\sqrt{29}/3$$.

But the answer has a $$i$$ for imaginary. When I was under the \sqrt{116}, I broke that down, but didn't realize there would be an $$i$$

Can someone explain that one to me?

Thanks
 
Mathematics news on Phys.org
datafiend said:
Hi all,
$$f(x) = 3x^2+2x+10$$

I recognized that this a quadratic and used the quadratic formula. I came up with $$-1/3+-\sqrt{29}/3$$.

But the answer has a $$i$$ for imaginary. When I was under the \sqrt{116}, I broke that down, but didn't realize there would be an $$i$$

Can someone explain that one to me?

Thanks

Hi!

$$\Delta=b^2-4ac=2^2-4 \cdot 3 \cdot 10=4-120=-116=116i^2$$

$$x_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2a}=\frac{-2 \pm \sqrt{116i^2}}{6}=\frac{-2 \pm 2 i \sqrt{29}}{6}=\frac{-1 \pm i \sqrt{29}}{3}$$

So, $x_1=\frac{-1+ i \sqrt{29}}{3}$ and $x_2=\frac{-1- i \sqrt{29}}{3}$.
 
$i$ is just a name for $\sqrt{-1}$, the imaginary unit.

The quadratic is $3x^2 + 2x + 10 = 0$. Multiply both sides by $4\cdot 3 = 12$ to get

$$4 \cdot 3^2 x^2 + 4 \cdot 3 \cdot 2x + 120 = (2 \cdot 3 \cdot x)^2 + 2 \cdot (2 \cdot 3) \cdot (2) x + (2)^2 + \left ( -4 + 120 \right)$$

By completing the square, one gets

$$(2 \cdot 3 x + 2)^2 + 116 = 0$$

And solving for $x$ results

$$x = \frac{-2 \pm \color{red}{\sqrt{-116}}}{6}$$

But we know that $\sqrt{ab} = \sqrt{a}\sqrt{b}$, thus $\sqrt{-116} = \sqrt{-1}\cdot \sqrt{166} = \sqrt{-1} \cdot 2 \cdot \sqrt{29} = \boxed{i2\sqrt{29}}$ which is the desired numerator.
 
Last edited:
If we complete the square to write the function in vertex form as follows, we find:

$$f(x) = 3x^2+2x+10=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+10-3\cdot\frac{1}{9}=3\left(x-\left(-\frac{1}{3}\right)\right)^2+\frac{29}{3}$$

We can then see that:

$$f_{\min}=f\left(-\frac{1}{3}\right)=\frac{29}{3}>0$$

So, we see that for any real value of $x$, the given function is greater than zero, and thus has no real roots. Thus, we should expect the roots to be complex.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
3K
Replies
13
Views
2K
Replies
1
Views
1K
Replies
7
Views
4K
Replies
3
Views
1K
Replies
19
Views
3K
Replies
1
Views
2K
Back
Top