MHB Finding 2D Polygon Coordinates from a point

Click For Summary
To find the coordinates of a polygon with n sides centered at a point (x, y) with a radius r, the equations for each vertex are x + r cos(2πk/n) and y + r sin(2πk/n), where k ranges from 0 to n-1. This ensures all points are equidistant from the center point, lying on a circle of radius r. The first vertex will be positioned to the right of (x, y) when k=0. If a different starting position is desired, a constant can be added to the cosine and sine functions. These equations provide a straightforward method for generating polygon coordinates based on user input.
Krotus
Messages
2
Reaction score
0
Suppose that I have the coordinates of x and y on a plane.

I am writing a piece of software where the user can select a polygon of 3, 4, 5, 6 or 8 sides. All of the polygon points are equidistant from the x, y point. In other words, if you drew a circle where the center was the x, y point, all of the points of the polygon would line on the circle.

That means, obviously, that the distance of each polygon point is equal to the imaginary circle's radius.

Given that information, what are the equations to create each type of polygon's set of points?
 
Mathematics news on Phys.org
Krotus said:
Suppose that I have the coordinates of x and y on a plane.

I am writing a piece of software where the user can select a polygon of 3, 4, 5, 6 or 8 sides. All of the polygon points are equidistant from the x, y point. In other words, if you drew a circle where the center was the x, y point, all of the points of the polygon would line on the circle.

That means, obviously, that the distance of each polygon point is equal to the imaginary circle's radius.

Given that information, what are the equations to create each type of polygon's set of points?

Hi Krotus, welcome to MHB!

Suppose the polygon will have $n$ sides.
And suppose each of the polygon points must have a distance of $r$ to point $(x,y)$.
Then the x- and y-coordinates of point $k$ of the polygon are given by:
$$\begin{cases}x + r \cos(2\pi \cdot k/n) \\ y + r\sin(2\pi \cdot k/n)\end{cases}$$
where $k$ runs from $0$ to $n-1$. Furthermore, the first point ($k=0$) will be to the right of $(x,y)$.

If you want the first point to be in a different location than to the right of $(x,y)$, we can add a fixed constant to the calls of $\cos$ and $\sin$.
 
Thanks! Very simple. I knew I had to be overthinking it.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
6
Views
1K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K