MHB Finding $a$ and $b$ for $f(x)=|\lg (x+1)|$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around finding the values of real numbers $a$ and $b$ such that $b > a$, given the function $f(x) = |\lg(x+1)|$. The conditions state that $f(a) = f\left(-\frac{b+1}{b+2}\right)$ and $f(10a + 6b + 21) = 4\lg 2$. Participants are attempting to solve for $a$ and $b$, but initial guesses, such as $a = 0$ and $b = -1$, are incorrect. The thread emphasizes the need for accurate calculations to satisfy the function's properties and the specified conditions. The search for the correct values continues among the contributors.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Suppose $f(x)=|\lg (x+1)|$ and real numbers $a$ and $b$ where $b>a$ satisfy $f(a)=f\left(-\dfrac{b+1}{b+2}\right)$ and $f(10a+6b+21)=4\lg 2$.

Find the values of $a$ and $b$.
 
Mathematics news on Phys.org
anemone said:
Suppose $f(x)=|\lg (x+1)|$ and real numbers $a$ and $b$ where $b>a$ satisfy $f(a)=f\left(-\dfrac{b+1}{b+2}\right)$ and $f(10a+6b+21)=4\lg 2$.

Find the values of $a$ and $b$.
[sp]is the answer a=0 b=-1[/sp]
 
Sorry, solakis, those are not the values for $a$ and $b$.
 
If $f(x)=f(y)$ then $\log(x+1) =\pm \log(y+1)$. Apart from the obvious solution $y=x$, that has the solution $y+1 = \dfrac1{x+1}$. Given that $f(a) = f\left(-\dfrac{b+1}{b+2}\right)$, it follows that either $-\dfrac{b+1}{b+2}=a$ or $-\dfrac{b+1}{b+2}+1 = \dfrac1{a+1}$. The second of those two possibilities leads to solakis's suggestion $a=0$, $b=-1$, which would be a solution apart from the fact that it does not satisfy the condition $b>a$.

So we have to look at the possibility $a = - \dfrac{b+1}{b+2}$. The equation $f(10a+6b+21) = 4\log2$ then says that $\log\left(-\tfrac{10(b+1)}{b+2} + 6b + 22\right) = \pm\log16$. Therefore $-\tfrac{10(b+1)}{b+2} + 6b + 22 = 16 $ or $\tfrac1{16}$.

If $-\tfrac{10(b+1)}{b+2} + 6b + 22 = 16 $ then $(b+1)\bigl(-10+ 6(b+2)\bigl) = 0$. That again has the unwanted solution $b=-1$, but it also has the solution $b+2 = \frac{10}6$, from which $b=-\frac13$. The corresponding value of $a$ is $-\frac25$.

(There was also the possibility that possibility that the equation $-\tfrac{10(b+1)}{b+2} + 6b + 22 = \tfrac1{16} $ might lead to a solution. But in fact that equation has no real solutions.) So the solution is $\boxed{a=-\dfrac25,\ b=-\dfrac13}$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
10
Views
996
Replies
2
Views
1K
Replies
3
Views
1K
Back
Top