I Finding a general formula for a recursive sequence

Trollfaz
Messages
143
Reaction score
14
The general formula for the nth term of the Fibonacci sequence where an=an-1+an-2 can determined by matrix diagonalizations
Is there a way to determine the formula of any recursive sequence say
an=a1+a2+...an-1
 
Mathematics news on Phys.org
Trollfaz said:
The general formula for the nth term of the Fibonacci sequence where an=an-1+an-2 can determined by matrix diagonalizations
Is there a way to determine the formula of any recursive sequence say
an=a1+a2+...an-1
https://en.wikipedia.org/wiki/Linear_recurrence_with_constant_coefficients

You solve these by finding the characteristic equation, solving that and using it to derive solutions as a linear combination of exponentials (or, when the solutions involve complex numbers, of sines, cosines and exponentials).

For Fibonacci: ##a_n=a_{n-1} + a_{n-2}##, the characteristic equation is ##x^2=x+1##. The characteristic equation can be found by assuming that the solution takes the form: ##a_n=x^n## and expressing the recurrence in terms of ##x##.

This recurrence has two terms on the right, so it is second order. Its characteristic equation is a quadratic. A recurrence with n terms on the right is "nth order". The chacteristic equation will be a polynomial equation of the nth degree.

So one has the polynomial equation in standard form: ##x^2 - x - 1 = 0##. This is a quadratic, so we can solve it with the quadratic formula to obtain ##x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}##. The two roots should be approximately 1.61803 and -0.61803. Call these ##r_1## and ##r_2##. [These turn out to be the golden ratio ##\phi## and the additive inverse of its reciprocal. The matching decimal digits is not a coincidence. It is one of the properties of the golden ratio].

The solution to the original Fibonacci recurrence will be a linear combination: ##a_n = k_1{r_1}^n + k_2{r_2}^n##. If you have the two starting terms for the recurrence, you can solve a set of simultaneous equations (via matrix algebra if you like) for ##k_1## and ##k_2##.

The starting terms were referred to as "boundary conditions" when I learned this stuff. It is very much akin to solving nth order linear homogenous differential equations.
 
Last edited:
  • Like
  • Informative
Likes DrClaude and mfb
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top