i am starting from the first principle, although u must have learned a lot from the previous helping hands.
Consider obvious points for an elastic collision:
1) momentum is conserved (i.e, in both X and Y axes).
Now, imagine the first ball was moving along negative X-axis toward origin, where it collided with the 2nd ball (stationary). Here only X-axis momentum was present before collision, so after collision the Y-axis components of momentum must cancel each other. After collision the first ball moves in an angle 55 deg, let us suppose, with positive X-axis, that is, , in +X/+Y quadrant of the co-ordinate system. It implies that the initially stationary ball would move in the +X/-Y plane because otherwise the Y-axis momentum would not cancel each other after collision and that cancellation is an obvious condition for conservation of momentum in Y-axis. This conclusion we can reach by conservation of momentum concept.
Just draw the fig. and imagine the collision.
2) kinetic energy must conserve. It implies,
½ mu2 = ½ mv12 + ½ mv22.
Or, u square = v1 square + v2 square.
It follows that v1 and v2 must be perpendicular to each other, if neither is zero. (imagine a right angled triangle obeying Pythagorian theorem having smaller sides v1 and v2 and with hypotenuse u. in this case v1 and v2 are mutually perpendicular).
For head on collisions (not the case, we are presently dealing with) v1 becomes zero, so v2 = u. this is a special case, where the first ball stops after collision and the stationary ball moves with the velocity of the first ball possessed before collision.
Now, if the 2nd ball makes an angle θ with positive X-axis in the +x/-Y plane, it follows that 55+ θ = 90 . the answer follows. this is a physical explanation of the proceedings, but you can find mathematically the same result also (i,e, 55+ θ = 90 and which u are trying, i have noticed, in the previous posts. it needs a bit of mathematical processes) with the three eqn.s of X-axis and Y-axis monentum conservation and K.E. conservation before and after collision.
this is an interesting problem where we can conclude that when two equal masses collide elastically, one being stationary, and the collision is not head on, the angle between the velocities after collision will always be 90 deg, it is independent of the values of the individual masses (as long as they are equal) and the angle of deflection of the first mass.