MHB Finding Cluster Points/Accumulation Points

  • Thread starter Thread starter brooklysuse
  • Start date Start date
  • Tags Tags
    Points
brooklysuse
Messages
4
Reaction score
0
Find the set of cluster points for the set A := {(−1)n/n : n ∈ N}. Justify your answer with
proof.

I believe 0 is a cluster point but I can't figure out how to prove this, or how to prove any other point is not.

Any quick help would be appreciated. Thanks.
 
Physics news on Phys.org
brooklysuse said:
Find the set of cluster points for the set A := {(−1)n/n : n ∈ N}.
I believe 0 is a cluster point
Hmm, I believe $$\frac{(-1)n}{n}=-1$$.
 
brooklysuse said:
Find the set of cluster points for the set A := {(−1)n/n : n ∈ N}. Justify your answer with
proof.

I believe 0 is a cluster point but I can't figure out how to prove this, or how to prove any other point is not.

Any quick help would be appreciated. Thanks.
I guess you mean $A := \{(−1)^n/n : n \in \Bbb{N}\}$. You are correct that $0$ is the only cluster point. To prove it, you will need to use the definition of a cluster point, which is ... ? (Start from there.)
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top