- #1
facenian
- 436
- 25
- TL;DR Summary
- A problem in Munkres' topology book ##\S##-7(b) Page 183
Show that if ##f## is a shrinking map ##d(f(x),f(y)) < d(x,y)## and ##X## is compact, then ##f## has a unique fixed point.
Hint. Let ##A_n=f^n(X)## and ##A=\cap A_n##. Given ##x\in A##, choose ##x_n## so that ##x=f^{n+1}(x_n)##. If ##a## is the limit of some subsequence of the sequence ##y_n=f^n(x_n)##, show that ##a\in A## and ##f(a)=x##. Conlude that ##A=f(A)##, so that ##diam\,A=0##.
Solution: I can prove all except that ##a\in A##, i.e., I had to assume it to prove that ##A=f(A)## and ##diam\,A=0##.
Any help will be welcome.
Hint. Let ##A_n=f^n(X)## and ##A=\cap A_n##. Given ##x\in A##, choose ##x_n## so that ##x=f^{n+1}(x_n)##. If ##a## is the limit of some subsequence of the sequence ##y_n=f^n(x_n)##, show that ##a\in A## and ##f(a)=x##. Conlude that ##A=f(A)##, so that ##diam\,A=0##.
Solution: I can prove all except that ##a\in A##, i.e., I had to assume it to prove that ##A=f(A)## and ##diam\,A=0##.
Any help will be welcome.