MHB Finding Distance with Constant Speed: Solving for m and b

Abdullah Qureshi
Messages
16
Reaction score
0
John is walking at a constant speed in front of a motion sensor. After 1 s, she is 2.5m from the sensor, 2 s later, she is 4 m from the sensor.
a) Find an equation of in the form d=mt+b
b) Determine the slope and d intercept and explain what they mean
c) How far will John be from the sensor 5s after he begins walking?
 
Mathematics news on Phys.org
distance from the sensor is a function of time in seconds

$d(1) = 2.5 \, m$
$d(1+2) = d(3) = 4 \, m$

slope, $m = \dfrac{\Delta d}{\Delta t} \, m/s$

see what you can do from here ...
 
Equivalently, since you are told that d= mt+ b, when t= 1, d= 2.5, so 2.5= m+ b and when m= 3, d= 4 so 4= 3m+ b.

Solve the two equations, m+ b= 2.5 and 3m+ b= 4, for m and b. I suggest you subtract the first equation from the second to eliminate b.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
5
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
9
Views
1K
Back
Top