Finding Eigenvalues for Different r Values

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Eigenvalues
Click For Summary

Discussion Overview

The discussion revolves around finding eigenvalues for a given Jacobian matrix as a function of the parameter \( r \). Participants explore methods to determine critical values of \( r \) where the nature of the eigenvalues changes, specifically transitioning from three negative eigenvalues to a complex-conjugate pair. The context includes mathematical reasoning and exploration of eigenvalue equations.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant identifies that for \( r = 1.3456171 \), the Jacobian has three negative eigenvalues, while for \( r = 1.3456172 \), there is a complex-conjugate pair of eigenvalues.
  • Another participant presents the eigenvalue equation and suggests differentiating it to find conditions for repeated roots, indicating a bifurcation point.
  • A participant questions the derivation of a specific expression for \( \lambda \), noting discrepancies with their own results when solving the quadratic and cubic equations.
  • Another participant elaborates on their approach to derive the expression for \( \lambda \) by manipulating the eigenvalue equations and performing algebraic operations.

Areas of Agreement / Disagreement

Participants express differing methods and results in deriving the expression for \( \lambda \), indicating that there is no consensus on the approach or the correctness of the derived expressions.

Contextual Notes

Participants rely on specific values for parameters \( b \) and \( \sigma \), and the discussion includes various algebraic manipulations that may depend on assumptions not fully articulated. The steps taken to derive equations are not universally agreed upon, leading to different interpretations of the eigenvalue problem.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\mathcal{J} = \begin{pmatrix}
-\sigma & \sigma & 0\\
1 & -1 & -\sqrt{b(r - 1)}\\
\sqrt{b(r - 1)} & \sqrt{b(r - 1)} & - b
\end{pmatrix}
$$
From a quick try and error, I was able to find that when $r = 1.3456171$ we will have 3 negative eigenvalues.
But when $r = 1.3456172$, there will be a complex-conjugate pair of eigenvalues.
Is there a mathematically more elegant way to determine this r value?
$b = \frac{8}{3}$ and $\sigma = 10$
 
Physics news on Phys.org
dwsmith said:
$$
\mathcal{J} = \begin{pmatrix}
-\sigma & \sigma & 0\\
1 & -1 & -\sqrt{b(r - 1)}\\
\sqrt{b(r - 1)} & \sqrt{b(r - 1)} & - b
\end{pmatrix}
$$
From a quick try and error, I was able to find that when $r = 1.3456171$ we will have 3 negative eigenvalues.
But when $r = 1.3456172$, there will be a complex-conjugate pair of eigenvalues.
Is there a mathematically more elegant way to determine this r value?
$b = \frac{8}{3}$ and $\sigma = 10$
This is an interesting problem. The eigenvalue equation is $\det(\mathcal{J} - \lambda I) = 0$, which simplifies to $$\lambda^3 + (b+\sigma+1)\lambda^2 + b(r+\sigma)\lambda + 2b\sigma(r-1) = 0.\qquad(1)$$ At the critical value of $r$ (the one where the bifurcation occurs, from three real roots to a complex conjugate pair), the eigenvalue equation will have a repeated root. That root will also be a root of the derived equation. So differentiate the eigenvalue equation to get $$3\lambda^2 +2(b+\sigma+1)\lambda + b(r+\sigma) = 0.\qquad(2)$$ Solve those equations together, to find that $$\lambda = \frac{18b\sigma(r-1) - b(b+\sigma+1)(r+\sigma)}{2(b+\sigma+1)^2 -6b(r+\sigma)}.$$ The next stage is to substitute that value of $\lambda$ into equation (2), to get a cubic equation for $r$. If you have stamina and patience enough to do that, you should find that, for the given values of $b$ and $\sigma$, one of the solutions is $r = 1.345617...$. (Rather you than me, though. (Yawn) )
 
Last edited:
Opalg said:
Solve those equations together, to find that $$\lambda = \frac{18b\sigma(r-1) - b(b+\sigma+1)(r+\sigma)}{2(b+\sigma+1)^2 -6b(r+\sigma)}.$$
How did you get this lambda? I solved for the quadratic and got something different. I also set the quadratic and cubic equal and then solved for lambda but didn't arrive at this lambda either.
 
dwsmith said:
How did you get this lambda? I solved for the quadratic and got something different. I also set the quadratic and cubic equal and then solved for lambda but didn't arrive at this lambda either.
Starting from $$\lambda^3 + (b+\sigma+1)\lambda^2 + b(r+\sigma)\lambda + 2b\sigma(r-1) = 0\qquad(1)$$ and $$3\lambda^2 +2(b+\sigma+1)\lambda + b(r+\sigma) = 0,\qquad(2)$$ I multiplied (1) by 3, and (2) by $\lambda$, and subtracted, getting $$(b+\sigma+1)\lambda^2 + b(r+\sigma)\lambda + 6b\sigma(r-1) = 0.\qquad(3)$$ I then multiplied (2) by $(b+\sigma+1)$, and (3) by 3, and again subtracted, to get the equation $$\lambda = \frac{18b\sigma(r-1) - b(b+\sigma+1)(r+\sigma)}{2(b+\sigma+1)^2 -6b(r+\sigma)}.$$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
8
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K